首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5645篇
  免费   149篇
  国内免费   1269篇
化学   5271篇
晶体学   20篇
力学   60篇
综合类   4篇
数学   87篇
物理学   1621篇
  2024年   26篇
  2023年   283篇
  2022年   237篇
  2021年   194篇
  2020年   223篇
  2019年   155篇
  2018年   153篇
  2017年   183篇
  2016年   202篇
  2015年   164篇
  2014年   231篇
  2013年   307篇
  2012年   264篇
  2011年   400篇
  2010年   307篇
  2009年   422篇
  2008年   365篇
  2007年   460篇
  2006年   387篇
  2005年   251篇
  2004年   256篇
  2003年   224篇
  2002年   161篇
  2001年   144篇
  2000年   113篇
  1999年   120篇
  1998年   115篇
  1997年   118篇
  1996年   91篇
  1995年   63篇
  1994年   62篇
  1993年   58篇
  1992年   40篇
  1991年   37篇
  1990年   36篇
  1989年   49篇
  1988年   30篇
  1987年   16篇
  1986年   15篇
  1985年   18篇
  1984年   18篇
  1983年   7篇
  1982年   18篇
  1981年   9篇
  1980年   11篇
  1979年   6篇
  1978年   2篇
  1976年   2篇
  1974年   2篇
  1973年   2篇
排序方式: 共有7063条查询结果,搜索用时 31 毫秒
901.
We study the effect of gold doping on oxygen vacancy formation and CO adsorption on the (1 1 0) and (1 0 0) surfaces of ceria by using density functional theory, corrected for on-site Coulomb interactions (DFT + U). The Au dopant substitutes a Ce atom in the surface layer, leading to strong structural distortions. The formation of one oxygen vacancy near a dopant atom is energetically “downhill” while the formation of a second vacancy around the same dopant requires energy. When the surface is in equilibrium with gaseous oxygen at 1 atm and room temperature there is a 0.4 probability that no oxygen atom left the neighborhood of a dopant. This means that the sites where the dopant has not lost oxygen are very active in oxidation reactions. Above 400 K almost all dopants have an oxygen vacancy next to them and an oxidation reaction in such a system takes place by creating a second vacancy. The energy required to form a second vacancy is smaller on (1 1 0) than on (1 0 0). On the (1 1 0) surface, it is much easier to form a second vacancy on the doped surface than the first vacancy on the undoped surface. The energy required to form a second oxygen vacancy on (1 0 0) is comparable to that of forming the first vacancy on the undoped surface. Thus doping makes the (1 1 0) surface a better oxidant but it has a small effect on the oxidative power of the (1 0 0) surface. On the (1 1 0) surface CO adsorption results in formation of a carbonate-like structure, similar to the undoped surface, while on the (1 0 0) surface direct formation of CO2 is observed, in contrast to the undoped surface. The Au dopant weakens the bond of the surrounding oxygen atoms to the oxide making it a better oxidant, facilitating CO oxidation.  相似文献   
902.
Sodium adsorbed on the Ge(0 0 1) surface causes reconstruction of the surface with the type of reconstruction depending on the amount of the adsorbate. We present theoretical investigations of the structure and electronic properties of Na-adsorbed Ge(0 0 1) for the coverage of 0.5 monolayer using the combination of two methods: a plane-wave basis method and a local-orbital minimal-basis method. Two possible minimum-total-energy atomic configurations have been found, namely, the Na/Ge(0 0 1)-p(2 ×1) and Na/Ge(0 0 1)-p(4 × 1) reconstructions. The surface electronic structure for all calculated configurations occurs to be metallic. Our investigations are completed by a simulation of STM images for the obtained atomic structures.  相似文献   
903.
Mechanism of the associative desorption of oxygen from the Pt(1 1 1) surface has been studied on atomic level by means of density-functional calculations. Key to the association of two oxygen adatoms into the O2 molecule is the excitation of one of the adatoms to on-top site, where it becomes essentially neutral. The related redistribution of the electronic density at the O adatom leads to the appearance of the lateral attraction with the other O atom, thus providing an efficient channel for associative desorption. Calculated local densities of states resemble the transformation of the electronic structure of adsorbed O adatoms from the reactive to bound state in the course of association.  相似文献   
904.
Surface chemistry of pitch-based spherical activated carbon (PSAC) was modified by chemical vapor deposition of NH3 (NH3-CVD) to improve the adsorption properties of uric acid. The texture and surface chemistry of PSAC were studied by N2 adsorption, pHPZC (point of zero charge), acid-base titration and X-ray photoelectron spectroscopy (XPS). NH3-CVD has a limited effect on carbon textural characteristics but it significantly changed the surface chemical properties, resulting in positive effects on uric acid adsorption. After modification by NH3-CVD, large numbers of nitrogen-containing groups (especially valley-N and center-N) are introduced on the surface of PSAC, which is responsible for the increase of pHPZC, surface basicity and uric acid adsorption capacity. Pseudo-second-order kinetic model can be used to describe the dynamic adsorption of uric acid on PSAC, and the thermodynamic parameters show that the adsorption of uric acid on PSAC is spontaneous, endothermic and irreversible process in nature.  相似文献   
905.
The dynamics of dissociative hydrogen adsorption on clean polycrystalline uranium has been studied using temperature programmed desorption and supersonic molecular beams. The initial sticking probability was measured as a function of incident kinetic energy between 3 and 255 meV. Two adsorption channels were observed; a non-activated direct channel was shown to be active over the entire energy range studied and a low energy indirect channel that was characterised by a decrease in sticking probability with increasing beam energy, and an insensitivity to both surface temperature and a range of hydrogen coverages. Together these results suggest the existence of an unaccommodated molecular precursor that has sufficient lifetime and mobility to locate favourable sites and dissociatively adsorb.  相似文献   
906.
We had prepared Mn-doped ZnO and Li, Mn codoped-ZnO films with different concentrations using spin coating method. Crystal structure and magnetic measurements demonstrate that the impurity phases (ZnMnO3) are not contributed to room temperature ferromagnetism and the ferromagnetism in Mn-doped ZnO film is intrinsic. Interesting, saturated magnetization decreases with Mn or Li concentration increase, showing that some antiferromagnetism exists in the samples with high Mn or Li concentration. In addition, Mn0.05Zn0.95O film annealed in vaccum shows larger ferromagnetism than the as-prepared sample and more oxygen vacancies induced by annealing in reducing atmosphere enhance ferromagnetism, which supports the bound magnetic polaron model on the origin of room temperature ferromagnetism.  相似文献   
907.
It is important to optimize the resonance ionization efficiency of the sputtered particle by evaluating the internal energy of it. And also the dependence of the change of the internal energy of it on primary ion species and accelerating voltages was investigated. For this study, we developed proto-type resonance laser ionization SNMS instrument, which is a quadrupole SIMS apparatus combined with a wavelength tunable laser. The internal energy of the sputtered aluminum atoms, which has lowly lying excited state (112 cm−1) on the ground state, was monitored. As the results, the internal energy of the sputtered aluminum atoms was not influenced by the change of the surface work function and primary ion beam energy at all. On the contrary, the density on lowly lying excited state drastically increased due to the existence of the oxygen on aluminum surface.  相似文献   
908.
The need for a molecular depth profiling technique to study organic layers has become a strong incentive in the SIMS community in the last few years, especially with the recent successes obtained with cluster ion beam depth profiling. In this work, we have investigated a thoroughly different approach by using very low energy (down to 200 eV) monoatomic or diatomic ions to sputter organic matter. Quite surprisingly, we were able to retain specific molecular information on various polymers even at very high fluence.Polymethylmethacrylate (PMMA) and polyethylene terephthalate (PET) films were depth-profiled with 200 eV Cs+ and 500 eV O2+ ions. With 200 eV Cs ions, the best profiles were obtained in the negative mode, due to a strong negative ionisation yield enhancement related to Cs retention in the polymer. A relatively high and stable signal from the most characteristic ions was measured all over the layer.With 500 eV O2+, real molecular depth-profiles were also obtained in both the positive and the negative modes. Once again, the main characteristic fragments of PET or PMMA remain detectable with stable yields all over the profile.  相似文献   
909.
910.
将煤层气液化后运往终端市场是一种十分有效的利用方式。与常规天然气不同,抽放煤层气含氮量高,采用有效的方式实现CH4/N2分离是煤层气液化流程中重要的环节。吸附分离是提高煤层气中甲烷浓度的可行方法。为了与低温液化过程紧密结合,探讨在低温下实现CH4/N2吸附分离的可行性,文中对CH4/N2在碳分子筛(CMS)上的低温分离特性进行了实验研究,并与常温下的实验结果进行了对比。实验结果表明,低温下CH4/N2吸附分离的特性与常温下有明显差别。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号