首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   2篇
  国内免费   52篇
化学   163篇
晶体学   3篇
力学   24篇
数学   35篇
物理学   99篇
  2023年   11篇
  2022年   2篇
  2021年   3篇
  2020年   7篇
  2019年   3篇
  2018年   1篇
  2017年   9篇
  2016年   15篇
  2015年   11篇
  2014年   8篇
  2013年   16篇
  2012年   14篇
  2011年   22篇
  2010年   13篇
  2009年   22篇
  2008年   14篇
  2007年   12篇
  2006年   31篇
  2005年   10篇
  2004年   11篇
  2003年   12篇
  2002年   4篇
  2001年   12篇
  2000年   7篇
  1999年   11篇
  1998年   4篇
  1997年   8篇
  1996年   2篇
  1995年   6篇
  1994年   5篇
  1993年   5篇
  1992年   1篇
  1991年   4篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有324条查询结果,搜索用时 15 毫秒
21.
基于核酸杂交链式反应影响液晶取向的原理, 构建了一种新型的超支状液晶核酸传感器用于检测p53突变基因. 本文突破传统构建超支状分子的方式, 采用杂交链式反应方法, 以目标序列p53突变基因作为引发剂, 3种不同的发卡探针Hairpin A, Hairpin B和Hairpin C为单体, 在温和的条件下, 通过改变单体的浓度和反应时间自发杂交组装形成尺寸和分子量可控的超支状DNA(branched-like DNA, bDNA). 借助捕获探针将该超支状DNA连接到液晶传感基底表面, 观察液晶分子取向改变前后的光学信号, 实现了p53基因含249密码子突变序列的快速检测. 本方法有望为核酸诊断的发展提供一种新的方法和思路.  相似文献   
22.
采用分子束外延法分别在650-920 ℃的Si(110)和920 ℃的Si(111)衬底表面生长出铁的硅化物纳米结构,并主要分析了920 ℃高温下纳米结构的形貌、组成相及其与Si 衬底的取向关系. 扫描隧道显微镜(STM)研究表明,920 ℃高温下,Si(110)衬底上生长的铁硅化合物完全以纳米线的形式存在,且其尺寸远大于650 ℃低温下外延生长的纳米线尺寸;Si(111)衬底上生长出三维岛和薄膜两种形貌的铁硅化合物,其中三维岛具有金属特性且直径约300 nm、高约155 nm,薄膜厚度约2 nm. 电子背散射衍射研究表明920 ℃高温下Si(110)衬底上生长的纳米线仅以β-FeSi2的形式存在,且β-FeSi2相与衬底之间存在唯一的取向关系:β-FeSi2(101)//Si(111);β-FeSi2 [010]//Si[110];Si(111)衬底上生长的三维岛由六方晶系的Fe2Si 相组成,Fe2Si 属于164 空间群,晶胞常数为a=0.405 nm,c=0.509 nm;与衬底之间的取向关系为Fe2Si(001)∥Si(111)和Fe2Si[120]//Si[112].  相似文献   
23.
用场发射扫描电镜(FESEM)、原子力显微镜(AFM)、光电子能谱(XPS)等仪器研究了棉纤维以及再生纤维素表面聚(二甲基硅氧烷-co-甲氧基十二烷基硅氧烷)(DDPS)的膜形貌及其定向排列方式.结果发现,在天然棉纤维以及再生纤维素模型表面,DDPS均能形成宏观上平滑、而微观形态学实则非均一的疏水性硅膜,表明DDPS的定向排列成膜方式为疏水性硅甲基、硅十二烷基朝外伸向空气,硅氧偶极键指向基质界面.  相似文献   
24.
There is an increasing demand to produce injection molded thermoplastic parts with high performance and more uniform microstructure. In this study, an injection mold with dynamic mold temperature control was developed to create a thermo-mechanical environment in which a high mold temperature and slow cooling rate were retained. Two-dimensional wide angle X-ray diffraction (2D-WAXD) and polarized optical microscopy (POM) studies were carried out to investigate the morphological distribution of isotactic polypropylene (iPP) through the depth. Due to the fast relaxation of polymer chains at a high temperature, the macroscopic orientated structure of iPP in conventional injection molding was eliminated, that is transited from the hierarchical morphology distribution to a more homogeneous formation. A homogeneous appearance without layer boundary was shown and many radial spherulites with loosely packed lamellae distributed uniformly throughout the sample.  相似文献   
25.
Magnetostrictive properties have relationship with the applied orientation field during the preparation of giant magnetostrictive composites. To understand the dependence of the optimal orientation field on particle volume fraction, composites with 20%, 30% and 50% particles by volume were fabricated by distributing Terfenol-D particles in an unsaturated polyester resin under various orientation fields. Their magnetostrictive properties were tested without pre-stress at room temperature. The results indicate that as the particle volume fraction increases, the optimal orientation field increases. The main reason for this phenomenon is the packing density for the composites with higher particle volume fraction is larger than that for those with lower particle content.  相似文献   
26.
Correlation of the g-tensor of a paramagnetic active center of a protein with its structure provides a unique experimental information on the electronic structure of the metal site. To address this problem, we made solid films containing metalloprotein (Desulfovibrio gigas cytochrome c(3)) microcrystals. The microcrystals in a liquid crystalline polymer medium (water/hydroxypropylcellulose) were partially aligned by a shear flow. A strong orientation effect of the metalloprotein was observed by EPR spectroscopy and polarizing optical microscopy. The EPR spectra of partially oriented samples were simulated, allowing for molecular orientation distribution function determination. The observed effect results in enhanced sensitivity and resolution of the EPR spectra and provides a new approach towards the correlation of spectroscopic data, obtained by EPR or some other technique, with the three-dimensional structure of a protein or a model compound.  相似文献   
27.
Powders of three hexagonal metal-hydrides or -deuterides are found to align in 4.4–8.3 T magnetic fields used for NMR. The field-alignment is unexpected, since all three systems have very small susceptibilities, as demonstrated by sharp NMR lines. The extent of alignment runs from nearly complete to barely detectable in ZrBe2(H,D)x, LuD3, and YD3, respectively. The preferred alignment direction in ZrBe2(H,D)x is with the crystallites’ c-axis perpendicular to B, while the c-axis and B tend to be parallel in LuD3 and YD3. The susceptibilities χ|| and χ are determined from bulk magnetization measurements in aligned ZrBe2H1.4 powder. The alignment must be considered for proper analysis of NMR spectra in these and related materials.  相似文献   
28.
Recent results of the characterisation of the structure, morphology and orientation of fine-scale, strengthening precipitate phases in selected magnesium alloys using transmission electron microscopy and microdiffraction are reviewed. The strengthening precipitate phases in Mg–Y–Nd alloys, aged to maximum hardness at 250°C, have been found to include two metastable precipitate phases β′ and β1, and the equilibrium precipitate β. The β′ phase has a globular form, a base-centred orthorhombic structure (potential point group of mmm), and an orientation relationship such that (100)β′//(1 10)α, [001]β′//[0001]α. The β1 phase has an f.c.c. structure (space group and an orientation relationship that may be described by (100)β1//[0001]α, and forms as plates parallel to The β phase has an f.c.c. structure (space group ) and also forms as plates on with an orientation relationship with the matrix phase that is identical to that observed for β1 phase. Precipitates in Mg–Al alloys, aged isothermally at 200°C, invariably have the b.c.c. structure of the equilibrium precipitate phase β (Mg17Al12). Three orientation relationships have been observed between β and the matrix phase. Most precipitates have an irrational orientation relationship that approximates to the Burger's relationship, (001)β//(0001)α, and a faceted lath morphology with habit plane parallel to (0001)α. A minor fraction of precipitates posses an orientation relationship that is of the form
and have a prismatic rod morphology. The long axes of these rods are parallel to [0001]α, and their faceted surfaces are parallel to A few precipitates are observed to have an orientation relationship such that
and a rod shape, with their long axes apparently inclined with respect to [0001]α.  相似文献   
29.
Porous polycrystal-type microstructures built up of needle-like platelets or sheets are characteristic for a number of biological and man-made materials. Herein, we consider (i) uniform, (ii) axisymmetrical orientation distribution of linear elastic, isotropic as well as anisotropic needles. Axisymmetrical needle orientation requires derivation of the Hill tensor for arbitrarily oriented ellipsoidal inclusions with one axis tending towards infinity, embedded in a transversely isotropic matrix; therefore, Laws' integral expression of the Hill tensor is evaluated employing the theory of rational functions. For a porosity lower 0.4, the elastic properties of the polycrystal with uniformly oriented needles are quasi-identical to those of a polycrystal with solid spheres. However, as opposed to the sphere-based model, the needle-based model does not predict a percolation threshold. As regards axisymmetrical orientation distribution of needles, two effects are remarkable: Firstly, the sharper the cone of orientations the higher the anisotropy of the polycrystal. Secondly, for a given cone, the anisotropy increases with the porosity. Estimates for the polycrystal stiffness are hardly influenced by the anisotropy of the bone mineral needles. Our results also confirm the very high degree of orientation randomness of crystals building up mineral foams in bone tissues. To cite this article: A. Fritsch et al., C. R. Mecanique 334 (2006).  相似文献   
30.
A method for characterizing texture from measurements of ultrasonic wave velocities is proposed. In polycrystalline aggregates, ultrasonic wave velocities are strongly affected by orientation distribution coefficients (ODCs), which are usually used to describe the degree of preferred grain orientation in textured materials. In this work, velocities of longitudinal and transverse waves propagating into aluminum alloy 6061 were measured under pure shear, simple shear and uniaxial tension. From the measured ultrasonic wave velocities, the ODCs W400 and W420 were calculated to infer the deformation-induced texture. The predicted pole figures, obtained using ultrasonic velocities, were in good qualitative agreement with the finite element polycrystal model analyzed pole figures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号