首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37502篇
  免费   2541篇
  国内免费   5327篇
化学   34518篇
晶体学   176篇
力学   1009篇
综合类   121篇
数学   4449篇
物理学   5097篇
  2024年   193篇
  2023年   1163篇
  2022年   1102篇
  2021年   1233篇
  2020年   2593篇
  2019年   2123篇
  2018年   2023篇
  2017年   1761篇
  2016年   1852篇
  2015年   1626篇
  2014年   2378篇
  2013年   5193篇
  2012年   1933篇
  2011年   1852篇
  2010年   1407篇
  2009年   1588篇
  2008年   1645篇
  2007年   1820篇
  2006年   1690篇
  2005年   1667篇
  2004年   1608篇
  2003年   1128篇
  2002年   675篇
  2001年   568篇
  2000年   588篇
  1999年   481篇
  1998年   446篇
  1997年   389篇
  1996年   368篇
  1995年   355篇
  1994年   296篇
  1993年   231篇
  1992年   224篇
  1991年   171篇
  1990年   138篇
  1989年   114篇
  1988年   98篇
  1987年   66篇
  1986年   62篇
  1985年   59篇
  1984年   61篇
  1983年   31篇
  1982年   47篇
  1981年   46篇
  1980年   32篇
  1979年   31篇
  1978年   32篇
  1977年   36篇
  1976年   38篇
  1974年   42篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
在局部区域上的奇摄动反应扩散方程初始边值问题   总被引:2,自引:2,他引:0  
本文是讨论一类在局部区域上的奇摄动反应扩散初始边值问题.利用算子理论和 不动点原理,得到了相应问题解的存在性和唯一性.  相似文献   
122.
The Lombardo–Imbihl–Fink (LFI) ODE model of the NO+NH3 reaction on a Pt(1 0 0) surface shows stable relaxation oscillations with very sharp transitions for temperatures T between 404 and 433 K. Here we study numerically the effect of linear diffusive coupling of these oscillators in one spatial dimension. Depending on the parameters and initial conditions we find a rich variety of spatio-temporal patterns which we group into four main regimes: bulk oscillations (BOs), standing waves (SW), phase clusters (PC), and phase waves (PW). Two key ingredients for SW and PC are identified, namely the relaxation type of the ODE oscillations and a nonlocal (and nonglobal) coupling due to relatively fast diffusion of the kinetically slaved variables NH3 and H. In particular, the latter replaces the global coupling through the gas phase used to obtain SW and PC in models of related surface reactions. The PW exist only under the assumption of (relatively) slow diffusion of NH3 and H.  相似文献   
123.
l.IntroductionowingtotheirpromisingproPertiesandPOtentialapplications,transitionmetalni-trideshavedrawngreatattentionandthepreparationandinvestigationofthesecom-poundshavebeenasubjectbothofscientificandoftechnologicalinterest.Transitionmetalnitridescombineadvantagesofexce1lenthardness,highmeltingPOint,goodchemi-calstabilityandhigheIectricalconductivity[11,henceoverlaySofthesecompoundshavefoundwideappIicationsinvariousfie1ds.Molybdenumnitrides,inparticular,havealsoemergedasverypromisingcandi…  相似文献   
124.
Block copolymers on basis of poly(oxanorbornenes) bearing functional moieties in their side‐chains are prepared via a combination of ROMP‐methods and 1,3‐dipolar‐“click”‐reactions. Starting from N‐substituted‐ω‐bromoalkyl‐oxanorbornenes and alkyl‐/perfluoroalkyl‐oxanorbornenes, block copolymers with molecular weights up to 25,000 g mol?1 were generated. Subsequent nucleophilic exchange‐reactions yielded the block‐copolymers functionalized with ω‐azidoalkyl‐moieties in one block. The 1,3‐azide/alkine‐“click” reactions with a variety of terminal alkynes in the presence of a catalyst system consisting of tetrakis(acetonitrile)hexafluorophosphate copper(I) and tris(1‐benzyl‐5‐methyl‐1H‐ [1,2,3]triazol‐4‐ylmethyl)‐amine furnished the substituted block copolymers in high yields, as proven by NMR‐spectroscopy. The resulting polymers were investigated via temperature‐dependent SAXS‐methods, revealing their microphase separated structure as well as their temperature‐dependent behavior. The presented method offers the generation of a large set of different block‐copolymers from only a small set of starting materials because of the high versatility of the “click” reaction, thus enabling a simple and complete functionalization after the initial polymerization reaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 485–499, 2007  相似文献   
125.
The interfacial interaction of Mo species with the HBeta zeolite was studied by multinuclear MAS NMR, XRD and N2 adsorption. As proved by the quantitative 27Al MAS NMR, this interaction is so strong as to dealuminate the framework of HBeta, and leads to a new peak appearing at −14 ppm, which indicates the formation of crystalline Al2(MoO4)3. This can also be detected by XRD measurements when the Mo loading is as high as 9.0 wt.%. The corresponding quantitative 29Si and 1H MAS NMR spectra show that the amount of silanols and Brønsted acidic sites decrease obviously with increasing Mo loading. This also reveals an interaction between Mo species and HBeta support through an oxygen bridge resulting from condensation with the hydroxyls on the support. At higher Mo loadings, the interaction is so strong that it results in an extraction of aluminum from the zeolite framework, and subsequently appearance of Al2(MoO4)3 and loss of Brønsted acidic sites. These can be correlated to the low catalytic activity of Mo/HBeta in metathesis of ethylene and 2-butylene to propylene.  相似文献   
126.
Crosslinked polymeric materials, which exhibit thermal remendability and removability through Diels–Alder (DA) and retro‐DA reactions, were obtained from using multifunctional maleimide and furan compounds as monomers. The synthesized monomers possess low melting points and good solubility in organo solvents to show excellent processing properties. The performance of DA and retro‐DA reactions were demonstrated with DSC and FTIR measurements. High performance of thermal remendablility and removability of the crosslinked materials were observed with SEM and solvent tests. These materials were applicable in advanced encapsulants and structural materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 905–913, 2006  相似文献   
127.
Methacrylate‐functionalized poly(ethylene oxide‐co‐ethylene carbonate) macromonomers were prepared in two steps by the anionic ring‐opening polymerization of ethylene carbonate at 180 °C, with potassium methoxide as the initiator, followed by the reaction of the terminal hydroxyl groups of the polymers with methacryloyl chloride. The molecular weight of the polymer went through a maximum after approximately 45 min of polymerization, and the content of ethylene carbonate units in the polymer decreased with the reaction time. A polymer having a number‐average molecular weight of 2650 g mol?1 and an ethylene carbonate content of 28 mol % was selected and used to prepare a macromonomer, which was subsequently polymerized by UV irradiation in the presence of different concentrations of lithium bis(trifluoromethanesulfonyl)imide salt. The resulting self‐supportive crosslinked polymer electrolyte membranes reached ionic conductivities of 6.3 × 10?6 S cm?1 at 20 °C. The coordination of the lithium ions by both the ether and carbonate oxygens in the polymer structure was indicated by Fourier transform infrared spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2195–2205, 2006  相似文献   
128.
Copper‐catalyzed controlled/living radical polymerization (LRP) of styrene (St) was conducted using the silica gel‐supported CuCl2/N,N,N′,N′,N″‐pentamethyldiethylenetriamine (SG‐CuCl2/PMDETA) complex as catalyst at 110 °C in the presence of a definite amount of air. This novel approach is based on in situ generation and regeneration of Cu(I) via electron transfer reaction between phenols and Cu(II). Sodium phenoxide or p‐methoxyphenol was used as a reducing agent of Cu(II) complexes in LRP. The number–average molecular weight, Mn,GPC, increases linearly with monomer conversion and agrees well with the theoretical values up to 85% conversion The molecular weight distribution, Mw/Mn, decreases as the conversion increases and reaches values below 1.2. The catalyst was recovered in aerobic condition and reused in copper‐catalyzed LRP of St. For the second run, the number–average molecular weights increased with monomer conversion and the polydispersities decreased as the polymerization proceeded and reached to the value <1.3 at 81% conversion. The recycled catalyst retained 90% of its original activity in the subsequent polymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 77–87, 2006  相似文献   
129.
The thermochemical transformation of electrostatically formed complexes of methyl orange (MO) with polycations containing primary amine groups such as ammonium salts afforded new polymers with a high concentration of covalently bound 4‐N,N‐dimethylaminoazobenzene groups in the side chain. Poly(allylamine hydrochloride) and poly(β‐aminoethylene acrylamide hydrochloride) were employed as support polycations for MO. The transformation of sulfonate–ammonium ion pairs into sulfonamide bonds, via heating at an elevated temperature, was supported by the polymer properties before and after the thermal treatment. The polymer structure changes were monitored with elemental analysis, Fourier transform infrared, 1H NMR, and ultraviolet–visible absorption spectroscopy, and thermogravimetric analysis. The spacer length between the backbone and azobenzene structures used as side chains strongly influenced the polymer properties before and after the heat‐induced reaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5898–5908, 2006  相似文献   
130.
The factors affecting pattern‐forming properties in reaction development patterning were examined with polyarylates with various bisphenol moieties. The developability of the photosensitive polyarylates was dependent on the properties of the subtituent (R) in the bisphenol moieties. The development time decreased in the following order: R?C(CH3)2 > fluorenyl unit ? phenolphthalein unit > C(CF3)2 > SO2. This order agreed with that of the reactivity between the polyarylates and ethanolamine, and these orders can be explained by pKa of the bisphenol used to prepare the polyarylates. The development with NH2? R′? OH resulted in successful positive‐tone pattern formation. However, pattern formation with the developers containing NH2? R′? OCH3 was unsuccessful. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2694–2706, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号