首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  免费   37篇
  国内免费   28篇
化学   219篇
晶体学   5篇
力学   2篇
物理学   175篇
  2024年   2篇
  2023年   30篇
  2022年   10篇
  2021年   7篇
  2020年   9篇
  2019年   10篇
  2018年   13篇
  2017年   10篇
  2016年   10篇
  2015年   14篇
  2014年   17篇
  2013年   14篇
  2012年   18篇
  2011年   23篇
  2010年   26篇
  2009年   42篇
  2008年   22篇
  2007年   23篇
  2006年   10篇
  2005年   18篇
  2004年   12篇
  2003年   13篇
  2002年   9篇
  2001年   12篇
  2000年   7篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有401条查询结果,搜索用时 15 毫秒
391.
We have employed aliovalent A-site cation substitution, LaIII-for-SrII, to dope the Sr(Fe0.5Ta0.5)O3 perovskite oxide with electrons. Essentially single-phase samples of (Sr1−xLax)(Fe0.5Ta0.5)O3 were successfully synthesized up to x≈0.3 in a vacuum furnace at 1400 °C. The samples were found to crystallize (rather than with orthorhombic symmetry) in monoclinic space group P21/n that accounts for the partial ordering of the B-site cations, Fe and Ta. With increasing La-substitution level, x, the degree of Fe/Ta order was found to increase such that the La-richest compositions are best described by the B-site ordered double-perovskite formula, (Sr,La)2FeTaO6. From Fe L3 and Ta L3 XANES spectra it was revealed that upon electron doping the two B-site cations, FeIII and TaV, are both prone to reduction. Magnetic susceptibility measurements showed spin-glass type behaviour for all the samples with a transition temperature slightly increasing with increasing x.  相似文献   
392.
Compounds in the double perovskites series Ba2LnSnxSb1−xO6−δ (Ln=Pr and Tb) have been synthesised and structurally characterised using synchrotron X-ray and neutron powder diffraction. It was found that the two end-members of the Ba2PrSnxSb1−xO6−δ series both adopt rhombohedral symmetry but the antimonate is a fully ordered double perovskite while the stannate has no B-site cation ordering. X-ray absorption near-edge structure (XANES) and near-infrared spectroscopy indicate that the Pr cations gradually change oxidation state from Pr3+ to Pr4+ with increasing x and that this is likely to be the cause of the loss of B-site ordering. Similarly, both Ba2TbSbO6 and Ba2TbSnO6−δ are cubic with B-site ordering present in the former but absent in the latter due to the oxidation state change of the Tb from Tb3+ to Tb4+. Multiple linear regression analysis of the Pr and Tb LIII-edge XANES indicates that the rate of Ln3+ transforming to Ln4+ is such that there are no oxygen vacancies in Ba2PrSnxSb1−xO6−δ but in Ba2TbSnxSb1−xO6−δ there is a small amount of oxygen vacancies, with a maximum of δ≈0.05 present.  相似文献   
393.
The structures of compounds in the perovskite series Ba2LnSnxNb1−xO6−δ (Ln=Pr and Tb and x=0, 0.1, 0.2, …, 1.0) have been examined using synchrotron X-ray and neutron diffraction. It was found that niobate members of both series feature full B-site cation ordering but that this order is lost with increasing x. X-ray absorption near-edge structure (XANES) and near-infrared spectroscopies indicate that the oxidation state of the lanthanide cations gradually changes from Ln3+ to Ln4+ with increased Sn4+ doping. This is believed to be the cause of the loss of B-site ordering. Least squares analysis of the XANES spectra suggests that the rate of the transformation of Ln3+ cations to the tetravalent state is such that the Pr series contains no oxygen vacancies while the Tb series may contain a very small amount of vacancies, with δ≈0.02.  相似文献   
394.
Perovskite-type cobaltates in the system La2Co1+z(MgxTi1−x)1−zO6 were studied for z=0≤x≤0.6 and 0≤x<0.9, using X-ray and neutron powder diffraction, electron diffraction (ED), magnetic susceptibility measurements and X-ray absorption near-edge structure (XANES) spectroscopy. The samples were synthesised using the citrate route in air at 1350 °C. The space group symmetry of the structure changes from P21/n via Pbnm to Rc with both increasing Mg content and increasing Co content. The La2Co(MgxTi1−x)O6 (z=0) compounds show anti-ferromagnetic couplings of the magnetic moments for the Co below 15 K for x=0, 0.1 and 0.2. XANES spectra show for the compositions 0≤x≤0.5 a linear decrease in the L3/(L3+L2) Co-L2,3 edge branching ratio with x, in agreement with a decrease of the average Co ion spin-state, from a high-spin to a lower-spin-state, with decreasing nominal Co2+ ion content.  相似文献   
395.
Mercury (Hg) speciation in different size fractions of a soil sample collected near an industrial area located in the South of Italy, which had been polluted by the dumping of Hg‐containing wastes from a chlor‐alkali plant, was investigated by XANES spectroscopy. In particular, a special procedure has been developed to study the soil colloidal fraction, both for sample preparation and for XANES data collection. In this soil, Hg was speciated in quite insoluble inorganic forms such as cinnabar (α‐HgS), metacinnabar (β‐HgS), corderoite (Hg3S2Cl2), and some amorphous Hg, S and Cl‐containing species, all derived from the land‐disposal of K106 Hg‐containing wastes. The contribution of the above‐mentioned chemical forms to Hg speciation changed as a function of particle size. For the fraction <2 mm the speciation was: amorphous Hg–S–Cl (34%) > corderoite (26%) > cinnabar (20%) = metacinnabar (20%); for the fraction <2 µm: amorphous Hg–S–Cl (40%) > metacinnabar (24%) > corderoite (20%) > cinnabar (16%); and for the fraction 430–650 nm, where most of the colloidal Hg was concentrated: amorphous Hg–S–Cl (56%) > metacinnabar (33%) > corderoite (6%) > cinnabar (5%). From these data it emerged that, even if Hg was speciated in quite insoluble forms, the colloidal fraction, which is the most mobile and thus the most dangerous, was enriched in relatively more soluble species (i.e. amorphous Hg–S–Cl and metacinnabar), as compared with cinnabar. This aspect should be seriously taken into account when planning environmental risk assessment, since the small particle size in which Hg is concentrated and the changing speciation passing from millimetre to nanometre size could turn apparently safe conditions into more hazardous ones.  相似文献   
396.
Rational development of efficient photocatalytic systems for hydrogen production requires understanding the catalytic mechanism and detailed information about the structure of intermediates in the catalytic cycle. We demonstrate how time‐resolved X‐ray absorption spectroscopy in the microsecond time range can be used to identify such intermediates and to determine their local geometric structure. This method was used to obtain the solution structure of the CoI intermediate of cobaloxime, which is a non‐noble metal catalyst for solar hydrogen production from water. Distances between cobalt and the nearest ligands including two solvent molecules and displacement of the cobalt atom out of plane formed by the planar ligands have been determined. Combining in situ X‐ray absorption and UV/Vis data, we demonstrate how slight modification of the catalyst structure can lead to the formation of a catalytically inactive CoI state under similar conditions. Possible deactivation mechanisms are discussed.  相似文献   
397.
工况光谱表征技术是深入理解电催化反应机理的有效手段,但是目前所使用的大多数工况表征技术都是基于(准)稳态的光谱技术,对发生在毫微秒时间尺度的瞬态变化过程很难直接进行观测。本研究通过在时间分辨紫外可见吸收光谱系统中引入电压脉冲,并在时间上同步电脉冲信号与光谱信号,实现了时间分辨率高达3μs的工况电化学紫外可见吸收光谱测量系统。利用此光谱系统和方法研究了水合铁等电催化剂的水氧化动力学机理,直接揭示了电催化剂表面水氧化中间物种在毫微秒时间尺度的形成、转化和反应动力学。微秒时间分辨的工况电化学紫外可见吸收光谱,可以促进电催化反应动力学机理的研究和认识,指导新型高效电催化剂的设计合成。  相似文献   
398.
Operando X-ray absorption spectroscopy identified that the concentration of Fe2+ species in the working state-of-the-art Pt−FeOx catalysts quantitatively correlates to their preferential carbon monoxide oxidation steady-state reaction rate at ambient temperature. Deactivation of such catalysts with time on stream originates from irreversible oxidation of active Fe2+ sites. The active Fe2+ species are presumably Fe+2O−2 clusters in contact with platinum nanoparticles; they coexist with spectator trivalent oxidic iron (Fe3+) and metallic iron (Fe0) partially alloyed with platinum. The concentration of active sites and, therefore, the catalyst activity strongly depends on the pretreatment conditions. Fe2+ is the resting state of the active sites in the preferential carbon monoxide oxidation cycle.  相似文献   
399.
The chemical selectivity and faradaic efficiency of high-index Cu facets for the CO2 reduction reaction (CO2RR) is investigated. More specifically, shape-controlled nanoparticles enclosed by Cu {hk0} facets are fabricated using Cu multilayer deposition at three distinct layer thicknesses on the surface facets of Au truncated ditetragonal nanoprisms (Au DTPs). Au DTPs are shapes enclosed by 12 high-index {310} facets. Facet angle analysis confirms DTP geometry. Elemental mapping analysis shows Cu surface layers are uniformly distributed on the Au {310} facets of the DTPs. The 7 nm Au@Cu DTPs high-index {hk0} facets exhibit a CH4 : CO product ratio of almost 10 : 1 compared to a 1 : 1 ratio for the reference 7 nm Au@Cu nanoparticles (NPs). Operando Fourier transform infrared spectroscopy spectra disclose reactive adsorbed *CO as the main intermediate, whereas CO stripping experiments reveal the high-index facets enhance the *CO formation followed by rapid desorption or hydrogenation.  相似文献   
400.
《中国化学》2017,35(12):1853-1860
Recent success and application of the percolation theory have highlighted cation‐disordered Li‐rich oxides as high energy density cathode materials. Generally, this kind of cathode materials suffer from low cycling stability and rate performance. Doped Ti4+ ions can improve the long‐term cycling stability and rate performance of the Li‐rich oxides materials with obvious capacity fading. The electrochemical performance in Lix Ni2−4x /3Sbx /3O2 can benefit a lot from the nanohighway, which is a kind of nanoscale 0‐TM diffusion channels in the transition metal layer and provides low diffusion barrier pathways for the lithium diffusion. In this work, the doping effect of Ti on the structure and electrochemical properties in Li1.15Ni0 .47Sb0 .38O2 is studied. The Ti‐stabilized Li1.15−x Ni0.47Tix Sb0 .38O2 (x =0, 0.01, 0.03 and 0.05) have been prepared by a solid‐state method and the Li1.03Ni0 .47Sb0 .38Ti0 .03O2 sample exhibits outstanding electrochemical performance with a larger reversible discharge capacity, better rate capability and cyclability. Synchrotron‐based XANES , combined with ab initio calculations in the multiple‐scattering framework, reveals the Ti ions have been doped into the Li‐site in the lithium layer and formed a distortion TiO6 octahedron. This TiO6 local configuration in the lithium can keep the stability of nanohighway in the electrochemical process. In particular, the Li1.03Ni0 .47Sb0 .38Ti0 .03O2 compound can deliver a discharge capacities 132 and 76 mAh /g at 0.2 and 5 C, respectivly. About 86% capacity retention occurs at 1 C rate after 500 cycles. This work suggests capacity fading in the oxide cathode materials can be suppressed to construct and stabilize the nanohighway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号