首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   0篇
  国内免费   6篇
化学   45篇
物理学   1篇
  2024年   1篇
  2023年   29篇
  2022年   4篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
排序方式: 共有46条查询结果,搜索用时 15 毫秒
31.
Cobalt-based catalysts are well-known to convert syngas into a variety of Fischer–Tropsch (FTS) products depending on the various reaction parameters, in particular particle size. In contrast, the reactivity of these particles has been much less investigated in the context of CO2 hydrogenation. In that context, Surface organometallic chemistry (SOMC) was employed to synthesize highly dispersed cobalt nanoparticles (Co-NPs) with particle sizes ranging from 1.6 to 3.0 nm. These SOMC-derived Co-NPs display significantly different catalytic performances under CO2 hydrogenation conditions: while the smallest cobalt nanoparticles (1.6 nm) catalyze mainly the reverse water-gas shift (rWGS) reaction, the larger nanoparticles (2.1–3.0 nm) favor the expected methanation activity. Operando X-ray absorption spectroscopy shows that the smaller cobalt particles are fully oxidized under CO2 hydrogenation conditions, while the larger ones remain mostly metallic, paralleling the observed difference of catalytic performances. This fundamental shift of selectivity, away from methanation to reverse water-gas shift for the smaller nanoparticles is noteworthy and correlates with the formation of CoO under CO2 hydrogenation conditions.  相似文献   
32.
Operando X-ray absorption spectroscopy identified that the concentration of Fe2+ species in the working state-of-the-art Pt−FeOx catalysts quantitatively correlates to their preferential carbon monoxide oxidation steady-state reaction rate at ambient temperature. Deactivation of such catalysts with time on stream originates from irreversible oxidation of active Fe2+ sites. The active Fe2+ species are presumably Fe+2O−2 clusters in contact with platinum nanoparticles; they coexist with spectator trivalent oxidic iron (Fe3+) and metallic iron (Fe0) partially alloyed with platinum. The concentration of active sites and, therefore, the catalyst activity strongly depends on the pretreatment conditions. Fe2+ is the resting state of the active sites in the preferential carbon monoxide oxidation cycle.  相似文献   
33.
工况光谱表征技术是深入理解电催化反应机理的有效手段,但是目前所使用的大多数工况表征技术都是基于(准)稳态的光谱技术,对发生在毫微秒时间尺度的瞬态变化过程很难直接进行观测。本研究通过在时间分辨紫外可见吸收光谱系统中引入电压脉冲,并在时间上同步电脉冲信号与光谱信号,实现了时间分辨率高达3μs的工况电化学紫外可见吸收光谱测量系统。利用此光谱系统和方法研究了水合铁等电催化剂的水氧化动力学机理,直接揭示了电催化剂表面水氧化中间物种在毫微秒时间尺度的形成、转化和反应动力学。微秒时间分辨的工况电化学紫外可见吸收光谱,可以促进电催化反应动力学机理的研究和认识,指导新型高效电催化剂的设计合成。  相似文献   
34.
The design of heterogeneous catalysts is necessarily surface-focused, generally achieved via optimization of adsorption energy and microkinetic modelling. A prerequisite is to ensure the adsorption energy is physically meaningful is the stable existence of the conceived active-site structure on the surface. The development of improved understanding of the catalyst surface, however, is challenging practically because of the complex nature of dynamic surface formation and evolution under in-situ reactions. We propose therefore data-driven machine-learning (ML) approaches as a solution. In this Minireview we summarize recent progress in using machine-learning to search and predict (meta)stable structures, assist operando simulation under reaction conditions and micro-environments, and critically analyze experimental characterization data. We conclude that ML will become the new norm to lower costs associated with discovery and design of optimal heterogeneous catalysts.  相似文献   
35.
The chemical selectivity and faradaic efficiency of high-index Cu facets for the CO2 reduction reaction (CO2RR) is investigated. More specifically, shape-controlled nanoparticles enclosed by Cu {hk0} facets are fabricated using Cu multilayer deposition at three distinct layer thicknesses on the surface facets of Au truncated ditetragonal nanoprisms (Au DTPs). Au DTPs are shapes enclosed by 12 high-index {310} facets. Facet angle analysis confirms DTP geometry. Elemental mapping analysis shows Cu surface layers are uniformly distributed on the Au {310} facets of the DTPs. The 7 nm Au@Cu DTPs high-index {hk0} facets exhibit a CH4 : CO product ratio of almost 10 : 1 compared to a 1 : 1 ratio for the reference 7 nm Au@Cu nanoparticles (NPs). Operando Fourier transform infrared spectroscopy spectra disclose reactive adsorbed *CO as the main intermediate, whereas CO stripping experiments reveal the high-index facets enhance the *CO formation followed by rapid desorption or hydrogenation.  相似文献   
36.
CO2 hydrogenation to methane is gaining increasing interest as one of the most promising ways to store intermittent renewable energy in the form of chemical fuels. Ni particles supported on CeO2 represent a highly efficient, stable and inexpensive catalyst for this reaction. Herein, Ni-doped CeO2 nanoparticles were tested for CO2 methanation showing an extremely high Ni mass-specific activity and CH4 selectivity. Operando characterization reveals that this performance is tightly associated with ionic Νi and Ce3+ surface sites, while formation of metallic Ni does not seem to considerably promote the reaction. Theoretical calculations confirmed the stability of interstitial ionic Ni sites on ceria surfaces and highlighted the role of Ce-O frustrated Lewis pair (FLP), Ni-O classical Lewis pair (CLP) and Ni-Ce pair sites to the activation of H2 and CO2 molecules. To a large extent, the theoretical predictions were validated by in situ spectroscopy under H2 and CO2 : H2 gaseous environments.  相似文献   
37.
Developing efficient electrocatalysts for the oxygen evolution reaction (OER) is paramount to the energy conversion and storage devices. However, the structural complexity of heterogeneous electrocatalysts makes it a great challenge to elucidate the dynamic structural evolution and OER mechanisms. Here, we develop a controllable atom-trapping strategy to extract isolated Mo atom from the amorphous MoOx-decorated CoSe2 (a-MoOx@CoSe2) pre-catalyst into Co-based oxyhydroxide (Mo-CoOOH) through an ultra-fast self-reconstruction process during the OER process. This conceptual advance has been validated by operando characterizations, which reveals that the initially rapid Mo leaching can expedite the dynamic reconstruction of pre-catalyst, and simultaneously trap Mo species in high oxidation state into the lattice of in situ generated CoOOH support. Impressively, the OER kinetics of CoOOH has been greatly accelerated after the reverse decoration of Mo species, in which the Mo-CoOOH affords a markedly decreased overpotential of 297 mV at the current density of 100 mA cm−2. Density functional theory (DFT) calculations demonstrate that the Co species have been greatly activated via the effective electron coupling with Mo species in high oxidation state. These findings open new avenues toward directly synthesizing atomically dispersed electrocatalysts for high-efficiency water splitting.  相似文献   
38.
在传统热催化材料的研究领域中,光照技术已经得到了广泛的应用,从而使传统热催化剂的催化反应活性和选择性得到优化.然而,在光热协同催化反应过程中,光照因素对催化反应过程的影响尚未得到很好地研究和理解.本文通过浸渍法制得Pt/Al2O3催化剂,并应用于光热协同催化CO2加氢反应.结果证明,在光热协同CO2加氢催化反应中, Pt/Al2O3催化剂表现出光热协同效应.本文结合原位漫反射红外光谱(operandoDRIFTS)和密度泛函理论计算(DFT)对光照因素对该催化反应过程的作用机制进行了进一步深入研究.结果表明, CO气体分子从Pt纳米颗粒上的脱附过程为CO2加氢反应的重要步骤;CO气体分子在Pt纳米颗粒上脱附的位置包含台阶位置(Ptstep)和平台位置(Ptterrace).结果表明,反应过程中CO气体分子从Pt表面的脱附有利于催化剂暴露出Pt反应活性位点.值得注意的是,在光热协同催化CO2加氢反应过程中,光照和温度因素对CO气体分子的脱附过程具有不同影响.吸附能的计算结果证明, CO气体分子吸附在Ptstep和Ptterrace上的吸附能分别为-1.24和-1.43eV.由此可见, CO气体分子与Pt纳米颗粒上的Ptstep吸附位点之间相互作用更强.在无光照作用的条件下对催化剂进行加热, CO气体分子更容易从Ptterrace吸附位点发生脱附;但是在对应的温度下加入光照作用后,吸附在Ptstep位点上的CO气体分子会先转移到Ptterrace吸附位点上,随后脱附,从而促进CO2加氢反应的进行.  相似文献   
39.
The electrochemical activation of CuInS2/MoSx for photoelectrochemical (PEC) H2 production was revealed for the first time through in operando Raman spectroscopy. During the activation process, the initial metallic MoSx phase was transformed to semiconducting MoSx, which facilitates charge carrier transfer between CuInS2 and MoSx. Ex situ X-ray photoelectron spectroscopy and Raman spectroscopy suggest the existence of MoO3 after the activation process. However, apart from contradicting these results, in operando Raman spectroscopy revealed some of the intermediate steps of the activation process.  相似文献   
40.
Environmentally sustainable and selective conversion of methane to valuable chemicals under ambient conditions is pivotal for the development of next-generation photocatalytic technology. However, due to the lack of microscopic knowledge about non-thermal methane conversion, controlling and modulating photocatalytic oxidation processes driven by photogenerated holes remain a challenge. Here, we report novel function of metal cocatalysts to accept photogenerated holes and dominate selectivity of methane oxidation, which is clearly beyond the conventional concept in photocatalysis that the metal cocatalysts loaded on the surfaces of semiconductor photocatalysts mostly capture photogenerated electrons and dominate reduction reactions exclusively. The novel photocatalytic role of metal cocatalysts was verified by operando molecular spectroscopy combined with real-time mass spectrometry for metal-loaded Ga2O3 model photocatalysts under methane and water vapor at ambient temperature and pressure. Our concept of metal cocatalysts that work as active sites for both photocatalytic oxidation and reduction provides a new understanding of photocatalysis and a solid basis for controlling non-thermal redox reactions by metal-cocatalyst engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号