首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   3篇
  国内免费   33篇
化学   159篇
力学   4篇
数学   18篇
物理学   16篇
  2022年   3篇
  2021年   8篇
  2020年   8篇
  2019年   4篇
  2018年   5篇
  2017年   10篇
  2016年   7篇
  2015年   6篇
  2014年   10篇
  2013年   9篇
  2012年   18篇
  2011年   14篇
  2010年   6篇
  2009年   18篇
  2008年   8篇
  2007年   12篇
  2006年   9篇
  2005年   7篇
  2004年   3篇
  2003年   4篇
  2001年   1篇
  1998年   2篇
  1997年   5篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1988年   1篇
  1987年   1篇
  1982年   2篇
  1979年   1篇
排序方式: 共有197条查询结果,搜索用时 140 毫秒
141.
The novel biacidic carbon has been synthesized via one-step hydrothermal carbonization of glucose, citric acid, and hydroxyethylsulfonic acid at 180 °C for only 4 h. The novel carbon had an acidity of 1.7 mmol/g with the carbonyl to sulfonic acid groups molar ratio of 1:3, which was confirmed by IR, XPS, TPD, SEM, and BET analyses. The catalytic activities of the carbon were investigated through esterification and oxathioketalization. The results showed that the carbon owned the comparable activities to sulfuric acid, which indicated that the carbon holds great potential for the green processes.  相似文献   
142.
Scientific research involving nanotechnology has grown exponentially and has led to the development of engineered nanoparticles (NPs). Silica NPs have been used in numerous scientific and technological applications over the past decade, necessitating the development of efficient methods for their synthesis. Recent studies have explored the potential of laser ablation as a convenient way to prepare metal and oxide NPs. Due to its high silica content, low cost, and widespread availability, sugarbeet bagasse is highly suitable as a raw material for producing silica NPs via laser ablation. In this study, two different NP production methods were investigated: laser ablation and NaOH treatment. We developed a novel, one-step method to produce silica NPs from sugarbeet bagasse using laser ablation, and we characterized the silica NPs using environmental scanning electron microscopy (ESEM), energy dispersive spectrometry (EDS), dynamic light scattering (DLS), transmission electron microscopy (TEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR–FTIR), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. EDS analysis and XPS confirmed the presence of silica NPs. The NPs produced by laser ablation were smaller (38–190 nm) than those produced by NaOH treatment (531–825 nm). Finally, we demonstrated positive effects of silica NPs produced from laser ablation on the growth of microalgae, and thus, our novel method may be beneficial as an environmentally friendly procedure to produce NPs.  相似文献   
143.
Manuela L. Kim 《Talanta》2009,77(3):1068-93
An hybrid mesoporous material synthesised in our laboratories for solid phase extraction (SPE) in flow through systems has been used for analytical purposes. The solid was obtained from mesoporous silica MCM-41 functionalized with 3-aminopropyltriethoxy silane by Sol-Gel methodology. In order to exploit the large sorption capacity of the material together with the possibility of modeling it for anions retention, a microcolumn (MC) filled with the solid was inserted in a flow system for preconcentration of Cr(VI) and its determination at ultratrace levels in natural waters. The analytical methodology involved a reverse flow injection system (rFI) holding a MC filled with the solid for the analyte extraction. Elution and colorimetric detection were carried out with 1-5 diphenylcarbazide (DPC) in sulfuric acid. DPC produced the reduction of Cr(VI) to Cr(III) together with the generation of a cationic red complex between Cr(III) and 1-5 diphenylcarbazone which was easily eluted and detected with a visible spectrophotometer. Moreover, the filling material got ready for the next sample loading remaining unspoiled for more than 300 cycles.The effect of several variables on the analytical signal as well as the influence of cationic and anionic interferences were discussed. Particular attention was given to sulfuric acid interference since it is the required media for the complex generation.Under optimal conditions, 99.8% of Cr(VI) recovery was obtained for a preconcentration time of 120 s (sample and DPC flow rates = 1 mL min−1) and an elution volume of 250 μL. The limit of detection (3 s) was found to be 0.09 μg L−1 Cr(VI) with a relative standard deviation (n = 10, 3 μg L−1) of 1.8.Since no Cr(III) was retained by the solid material and Cr(VI) was completely adsorbed, electrothermal atomic absorption spectrometry (ET AAS) determinations of Cr(III) were also performed by simply measuring its concentration at the end of the microcolumn after Cr(VI) retention by the mesoporous solid.Applications to the determination of Cr(VI) and Cr(III) in natural waters and the validation of the methodology were also studied.  相似文献   
144.
Shan Hu 《Talanta》2009,80(2):454-12607
A novel method to significantly enhance fluorescence resonance energy transfer (FRET) signal which occurred from fluoresceine isothiocyanate (FITC) to Dylight 549 was studied in this paper. Streptavidin was labeled with the donor fluorophore FITC and biotinamide was conjugated to the acceptor Dylight 549. When biotinamide bound to streptavidin, FRET would occur from FITC to Dylight 549 while a remarkable fluorescence enhancement of streptavidin-FITC was observed. The fluorescence enhancement of streptavidin-FITC in the presence of biotin was utilized in the FRET system to obtain higher fluorescence signal. Increase of fluorescence intensity of FITC and decrease of Dylight 549 depended on the concentration of competitive biotin. A homogeneous analysis method was established based on the fluorescence recovery of FITC in the FRET system with fluorescence enhancement. This method is highly sensitive and simple to determine the concentration of biotin. The detection limit for biotin was 0.5 nM and the linear range of the assay was 0.8-9.8 nM. The response time is no more than 15 min during the one-step assay due to the high affinity between streptavidin and biotin.  相似文献   
145.
A simple and environment friendly chemical route for detecting latent fingermarks by one-step single-metal nanoparticles deposition method (SND) was achieved successfully on several non-porous items. Gold nanoparticles (AuNPs) synthesized using sodium borohydride as reducing agent in the presence of glucose, were used as working solution for latent fingermarks detection. The SND technique just needs one step to obtain clear ridge details in a wide pH range (2.5-5.0), whereas the standard multi-metal deposition (MMD) technique requires six baths in a narrow pH range (2.5-2.8). The SND is very convenient to detect latent fingermarks in forensic scene or laboratory for forensic operators. The SND technique provided sharp and clear development of latent fingermarks, without background staining, dramatically diminished the bath steps.  相似文献   
146.
In this work, an analytical method for simultaneous analysis of several quinolones (cinoxacin, oxolinic acid, nalidixic acid, and flumequine) and fluoroquinolones (norfloxacin, enrofloxacin, enoxacin, ciprofloxacin, and danofloxacin) in baby-food samples is described for the first time. The method is based on isolation of these analytes by ultrasound-assisted extraction procedure followed by a solid-phase extraction sample clean-up step and final determination of the analytes by HPLC using UV detection. For the extraction step, 2 g baby food was mixed with methanol in a centrifuge tube and one single extraction cycle of 15 min at room temperature was carried out. After centrifugation, supernatant was collected and two different solid-phase extraction procedures were developed and evaluated for sample clean-up. The first was based on use of strong anion-exchange cartridges whereas the second was based on use of a ciprofloxacin-imprinted polymer. Both sample clean-up procedures had their own advantages and drawbacks, and the analytical performance and applicability of each procedure was established and properly discussed. The anion-exchange resin-based method enabled simultaneous determination of quinolones and fluoroquinolones, reaching limits of detection ranging from 0.03 to 0.11 μg g−1. In contrast, the use of a ciprofloxacin-imprinted polymer did provide selectivity towards fluoroquinolones, leading to chromatograms free from co-extractives reaching limits of detection one order of magnitude lower than those obtained by the first approach.  相似文献   
147.
The novel nanostructured F-containing TiO2 (F-TiO2) sphere was directly synthesized on the surface of Ti foil in the solution of NH4F and HCl by one-step hydrothermal approach under low-temperature condition. The samples were characterized respectively by means of field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The results showed that the F-TiO2 sphere was hierarchical structure, which composed of porous octahedron crystals with one truncated cone, leading to a football-like morphology. XPS results indicated that F anions were just physically adsorbed on the surface of TiO2 microspheres. The studies on the optical properties of the F-TiO2 were carried out by UV-vis light absorption spectrum. The surface fluorination of the spheres, the unique nanostructure induced accessible macropores or mesopores, and the increased light-harvesting abilities were crucial for the high photoelectrochemical activity of the synthesized F-TiO2 sphere for water-splitting. The photocurrent density of the F-TiO2 sphere thin film was more than two times than that of the P25 thin film. Meanwhile, a formation mechanism was briefly proposed. This approach could provide a facile method to synthesize F-TiO2 microsphere with a special morphology and hierarchical structure in large scale.  相似文献   
148.
Organic dyes, especially the harmful cationic dye methyl orange (MO), are emerging pollutants. The development of new materials for their efficient adsorption and removal is thus of great significance. Porous organic polymers (POPs) such as hyper-cross-linked polymers, covalent organic frameworks, conjugated microporous polymers, and polymers with intrinsic microporosity are a new class of materials constructed from organic molecular building blocks. To design POPs both with good porosity and task-specific functionalization is still a critical challenge. In this study, we have demonstrated a simple one-step method for the synthesis of the hyper-cross-linked aromatic triazine porous polymer (HAPP) via the Friedel-Crafts reaction. The resultant porous polymer was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, elemental analysis (EA), thermo-gravimetric analysis (TGA), solid-state 13C nuclear magnetic resonance (13C NMR), and nitrogen adsorption-desorption isotherms. The results show that HAPP is a rough, irregular morphology, porous organic polymer that is amorphous in nature. The novel polymer showed high Brunauer-Emmett-Teller surface area (of up to 104.36 m2∙g−1), porosity, and physicochemical stability. Owing to the presence of N heteroatom pore surfaces in the network, the material exhibited a maximum adsorption capacity of 249.3 mg∙g−1 for MO from aqueous solutions at room temperature. This is higher than that of some reported porous materials under the same conditions. To explain this phenomenon more clearly, theoretical quantum calculations were performed via the DFT method using Gaussian 09 software and Multiwfn version 3.4.1. It is performed to analyze the properties and electrostatic potential (ESP) of the HAPP monomer and MO. The results indicated that the N heteroatom of HAPP can easily develop strong interactions with MO, supporting the efficient adsorption of MO. The parameters studied include the physical and chemical properties of adsorption, pH, contact time, and initial concentrations. The percentage of MO removal increased as the pH was increased from 2 to 4. The optimum pH required for maximum adsorption was found to be 5.6. Adsorption kinetics data were modeled using the pseudo-first-order and pseudo-second-order models. The results indicate that the second-order model best describes the kinetic adsorption data. The adsorption isotherms revealed a good fit with the Langmuir model. More importantly, the HAPP can be regenerated effectively and recycled at least five times without significant loss of adsorption capacity. Therefore, it is believed that HAPPs with hierarchical porous structures, high surface areas, and physicochemical stability are promising candidates for the purification and treatment of dyes in solution.  相似文献   
149.
Three different clean-up methods for the analysis of deoxynivalenol in cereals and cereal-based foods are described and compared. DON was extracted with water or acetonitrile/water (84/16, v/v) and the extracts were cleaned-up by passing either through two different immunoaffinity columns (DONtest, Vicam; DONPrep, Rhone) or a charcoal/alumina column (MycoSep, Romer Labs). Determinative analysis was performed by high performance liquid chromatography (HPLC) with diode array detection (DAD) and fluorescenic detection (FLD) after post-column derivatisation. Different parameters were optimised and possible reasons for diverse results are discussed. The final method was validated and adopted to different matrices. Best results were obtained using immunoaffinity columns for clean-up in combination with HPLC-FLD detection of the DON-derivative.  相似文献   
150.
This work reported a one-step encapsulation of indocyanine green (ICG) in ZIF-8 nanoparticles (NPs), which possess an absorption band in the near infrared region and have the good photothermal conversion efficiency. The in vivo and in vitro studies show that, after loading DOX, ICG@ZIF-8-DOX NPs exhibit the chem-band photothermal synergistic therapy for tumor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号