首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   602篇
  免费   3篇
  国内免费   2篇
化学   165篇
物理学   442篇
  2024年   1篇
  2023年   79篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2013年   20篇
  2012年   2篇
  2011年   4篇
  2010年   3篇
  2009年   6篇
  2008年   3篇
  2007年   21篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  2003年   2篇
  2002年   13篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   6篇
  1996年   1篇
  1995年   7篇
  1994年   6篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   45篇
  1984年   34篇
  1983年   23篇
  1982年   14篇
  1981年   31篇
  1980年   18篇
  1979年   20篇
  1978年   20篇
  1977年   32篇
  1976年   25篇
  1975年   25篇
  1974年   18篇
  1973年   46篇
  1972年   22篇
  1971年   16篇
排序方式: 共有607条查询结果,搜索用时 31 毫秒
121.
The level structures of the 145, 147, 149Nd nuclei up to about 5 MeV excitation energy have been investigated with the (3He, α) reaction at 24 MeV. Additional 17 MeV (d, t) data have been obtained for 147, 149Nd. The angular distributions have been analyzed with standard DWBA calculations, and spectroscopic factors have been deduced. Two groups of states carrying h112 single-particle strength may be associated with the 92? [514] and 112? [505] Nilsson orbitals. A considerable amount of high-l single-particle strength may be found in the continuum observed in the (3He, α) spectra above 3 MeV in all the nuclei.  相似文献   
122.
Details of the reactive processes by which TiC and TiN microclusters are formed from precursor molecules in the gas phase are not clearly understood. We have performed ab initio calculations based on density functional theory methods in order to get some insight into the chemical reactions of precursor molecules. Using microcanonical molecular-dynamics we have simulated scattering processes between molecules consisting of the elements Ti, Cl, N and H. The simulations show that fluctuations of the kinetic energy can be large enough to break up bonds at moderate temperatures.  相似文献   
123.
The new [3+3] NH-CH2 bridged cyclophanes bearing different functional groups and different cavity sizes were prepared in one pot by treating diamine derivatives with dialdehyde derivatives. Factors important for efficiently form-ing these macrocycles include reaction concentration (10 or 100?mmol), temperature (room temperature or 40–50?°C) and solvent (CHCl3). Preliminary fluorescence spectrometer and HRMS-ESI studies demonstrated the inner cavity of the new [3+3] NH-CH2 bridged cyclophanes bearing three hydroxyl groups (3c) as a new highly selective probe for the naked eye detection of Ag+ in PBS buffer.  相似文献   
124.
Palladium, Platinum, and Diiron Complexes with Isocyanoacetate: Ring Closure, Acid‐Induced Ring Opening, Diprotonation Substitution by isocyanoacetate (CNCH2CO2?) of one chloro ligand in trans‐[MCl2(PPh3)2] (M = Pd, Pt) results in the Δ2‐oxazolin‐5‐on‐2‐ato complexes 4a , b , i.e. immediate cyclization occurs in contact with these metal(II) species. In contrast, the open‐chain form of the functional isocyanide is retained in [K(18‐crown‐6][Fe2Cp2(CNCH2CO2)(CO)3] ( 16 ) in which it occupies a terminal position. Protonation (alkylation) of the platinum complex 4b proceeds with ring cleavage and formation of isocyano acetic acid 11 (ethyl isocyanoacetate 12 ) stabilized by metal ion coordination. Protonation of 16 requires two equivalents of acid to yield the aminocarbyne‐bridged complex [{μ‐C=N(H)CH2CO2H}Fe2Cp2(CO)3](BF4) ( 17 ) as the only isolable product. Here isocyanoacetate displays a third kind of reactivity pattern in addition to that at PdII/PtII and that at Cr0/W0 where the primary species [M(CO)5CNCH2CO2]? and [M(CO)5CNCH2CO2H] proved to be the most stable. All of the proposed structures are substantiated by analytical and the usual spectroscopic (IR, NMR{1H, 13C, 31P}, FAB‐MS) data, that of 4b also by an X‐ray structure determination which reveals a practically perpendicular arrangement of the coordination and the ring plane, and a long C2‐O bond as the predetermined breaking point of the heterocycle.  相似文献   
125.
Renewable H2 production by water electrolysis has attracted much attention due to its numerous advantages. However, the energy consumption of conventional water electrolysis is high and mainly driven by the kinetically inert anodic oxygen evolution reaction. An alternative approach is the coupling of different half-cell reactions and the use of redox mediators. In this review, we, therefore, summarize the latest findings on innovative electrochemical strategies for H2 production. First, we address redox mediators utilized in water splitting, including soluble and insoluble species, and the corresponding cell concepts. Second, we discuss alternative anodic reactions involving organic and inorganic chemical transformations. Then, electrochemical H2 production at both the cathode and anode, or even H2 production together with electricity generation, is presented. Finally, the remaining challenges and prospects for the future development of this research field are highlighted.  相似文献   
126.
Rapid access to sequence-controlled multi-block copolymers (multi-BCPs) remains as a challenging task in the polymer synthesis. Here we employ a Lewis pair (LP) composed of organophosphorus superbase and bulky organoaluminum to effectively copolymerize the mixture of methacrylate, cyclic acrylate, and two acrylates, into well-defined di-, tri-, tetra- and even a hepta-BCP in one-pot one-step manner. The combined livingness, dual-initiation and CSC feature of Lewis pair polymerization enable us to achieve not only a trihexaconta-BCP with the highest record in 8 steps by using four-component monomer mixture as building blocks, but also the arbitrarily-regulated monomer sequence in multi-BCP, simply by changing the composition and adding order of the monomer mixtures, thus demonstrating the powerful capability of our strategy in improving the efficiency and enriching the composition of multi-BCP synthesis.  相似文献   
127.
Combustion is often difficult to spatially direct or tune associated kinetics—hence a run-away reaction. Coupling pyrolytic chemical transformation to mass transport and reaction rates (Damköhler number), however, we spatially directed ignition with concomitant switch from combustion to pyrolysis (low oxidant). A ‘surface-then-core’ order in ignition, with concomitant change in burning rate,is therefore established. Herein, alkysilanes grafted onto cellulose fibers are pyrolyzed into non-flammable SiO2 terminating surface ignition propagation, hence stalling flame propagating. Sustaining high temperatures, however, triggers ignition in the bulk of the fibers but under restricted gas flow (oxidant and/or waste) hence significantly low rate of ignition propagation and pyrolysis compared to open flame (Liñán's equation). This leads to inside-out thermal degradation and, with felicitous choice of conditions, formation of graphitic tubes. Given the temperature dependence, imbibing fibers with an exothermically oxidizing synthon (MnCl2) or a heat sink (KCl) abets or inhibits pyrolysis leading to tuneable wall thickness. We apply this approach to create magnetic, paramagnetic, or oxide containing carbon fibers. Given the surface sensitivity, we illustrate fabrication of nm- and μm-diameter tubes from appropriately sized fibers.  相似文献   
128.
Systematic reaction path exploration revealed the entire mechanism of Knowles's light-promoted catalytic intramolecular hydroamination. Bond formation/cleavage competes with single electron transfer (SET) between the catalyst and substrate. These processes are described by adiabatic processes through transition states in an electronic state and non-radiative transitions through the seam of crossings (SX) between different electronic states. This study determined the energetically favorable SET path by introducing a practical computational model representing SET as non-adiabatic transitions via SXs between substrate's potential energy surfaces for different charge states adjusted based on the catalyst's redox potential. Calculations showed that the reduction and proton shuttle process proceeded concertedly. Also, the relative importance of SET paths (giving the product and leading back to the reactant) varies depending on the catalyst's redox potential, affecting the yield.  相似文献   
129.
Photocatalytic 2-iodoethanol (IEO) coupling provides 1,4-butanediol (BDO) of particular interest to produce degradable polyesters. However, the reduction potential of IEO is too negative (−1.9 vs NHE) to be satisfied by most of the semiconductors, and the kinetics of transferring one electron for IEO coupling is slow. Here we design a catalytic Ni complex, which works synergistically with TiO2, realizing reductive coupling of IEO powered by photo-energy. Coordinating by terpyridine stabilizes Ni2+ from being photo-deposited to TiO2, thereby retaining the steric configuration beneficial for IEO coupling. The Ni complex can rapidly extract electrons from TiO2, generating a low-valent Ni capable of reducing IEO. The photocatalytic IEO coupling thus provides BDO in 72 % selectivity. By a stepwise procedure, BDO is obtained with 70 % selectivity from ethylene glycol. This work put forward a strategy for the photocatalytic reduction of molecules requiring strong negative potential.  相似文献   
130.
Generating FeIV=O on single-atom catalysts by Fenton-like reaction has been established for water treatment; however, the FeIV=O generation pathway and oxidation behavior remain obscure. Employing an Fe−N−C catalyst with a typical Fe−N4 moiety to activate peroxymonosulfate (PMS), we demonstrate that generating FeIV=O is mediated by an Fe−N−C−PMS* complex—a well-recognized nonradical species for induction of electron-transfer oxidation—and we determined that adjacent Fe sites with a specific Fe1−Fe1 distance are required. After the Fe atoms with an Fe1-Fe1 distance <4 Å are PMS-saturated, Fe−N−C−PMS* formed on Fe sites with an Fe1-Fe1 distance of 4–5 Å can coordinate with the adjacent FeII−N4, forming an inter-complex with enhanced charge transfer to produce FeIV=O. FeIV=O enables the Fenton-like system to efficiently oxidize various pollutants in a substrate-specific, pH-tolerant, and sustainable manner, where its prominent contribution manifests for pollutants with higher one-electron oxidation potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号