首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5225篇
  免费   599篇
  国内免费   516篇
化学   3388篇
晶体学   24篇
力学   235篇
综合类   45篇
数学   69篇
物理学   2579篇
  2024年   12篇
  2023年   79篇
  2022年   219篇
  2021年   217篇
  2020年   242篇
  2019年   177篇
  2018年   145篇
  2017年   261篇
  2016年   313篇
  2015年   282篇
  2014年   360篇
  2013年   367篇
  2012年   409篇
  2011年   324篇
  2010年   252篇
  2009年   298篇
  2008年   303篇
  2007年   311篇
  2006年   251篇
  2005年   221篇
  2004年   233篇
  2003年   166篇
  2002年   159篇
  2001年   97篇
  2000年   97篇
  1999年   98篇
  1998年   94篇
  1997年   86篇
  1996年   50篇
  1995年   47篇
  1994年   36篇
  1993年   35篇
  1992年   21篇
  1991年   23篇
  1990年   23篇
  1989年   11篇
  1988年   8篇
  1987年   7篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有6340条查询结果,搜索用时 10 毫秒
991.
The applicability of model polydiacetylenes (PDAs) in hydrogen ions sensitive optodes was tested. Nanofibers mats were electrospun using a mixture of polyvinyl chloride (PVC) and polycaprolactone (PCL) together with 10, 12-tricosadiynoic acid (TCDA) or 10,12-pentacosadiynoic acid (PCDA). After the polymerization the mats were applied in colorimetric and fluorimetric pH sensors. The PDAs were formed by photopolymerization with a UV lamp (254 nm), resulting in a change of mats color from white to dark blue. The morphology of both fiber mats is similar (SEM images), and the average diameters of fibers were estimated as equal to 228±73 and 248±61 nm for TCDA and PCDA, respectively. As the pH increases, the color of the fiber mat changes from blue to red and the process can be followed visually. The result obtained by computer image analysis showed a sigmoidal increase in the intensity of red and a decrease in the intensity of blue color with increasing pH. A similar sigmoidal response is observed for the dependence of the emission intensity on the pH. Changes in the recorded signal occur in the pH range from 7 to 8.5 or from 8 to 9.5 for mats with TCDA and PCDA, respectively. Both readout modes can be successfully used for pH sensing with proposed nanofibrous mats in the range of pH close to the physiological pH range.  相似文献   
992.
A nanocomposite (Ho2O3NPs/BNT) was synthesized by decorating holmium(III)oxide nanoparticles (H2O3NPs) on bentonite (BNT) through a realizable sonochemical approach for the electrochemical detection of haloperidol (Hlp). A glassy carbon electrode was modified with this nanocomposite. The Ho2O3NPs/BNT modified electrode outperformed bare and other modified electrodes in terms of electrochemical performance for Hlp detection in a pH 8.0 phosphate buffer. The proposed electrochemical platform showed a wide linear range (0.01 μM–24 μM), low detection limit (2.4 nM), and high sensitivity by square wave voltammetry. In addition, the proposed electrochemical sensor met the clinical criteria in terms of stability, selectivity, and repeatability.  相似文献   
993.
A highly sensitive electrochemical sensor based on arenediazonium tosylates was designed to detect meldonium in urine. The effect of the concentration of ArN2+OTs arenediazonium tosylate modifier and various substituents was studied. Basic operating parameters for voltammetric meldonium detection were established and the procedure for urine sample preparation was developed. The following values were obtained: limit of detection (LOD) 0.005 mg ⋅ L−1 (P=0.95) and limit of quantification (LOQ) 0.01 mg ⋅ L−1. The relationship between the analytical signal and meldonium concentration in the solution ranging from 0.01 to 400 mg ⋅ L−1 was described by a linear function. The meldonium concentration error did not exceed 18 %. The analysis time for a single urine sample was reduced to 15 minutes.  相似文献   
994.
In developing countries, subsistence gold mining entails mixing metallic mercury with crushed sediments to extract gold. In this approach, the gold−mercury amalgam is heated to evaporate mercury and obtain gold. Thus, the highly volatile mercury can be absorbed through inhalation, resulting in adverse health effects. Urinalysis can be used to detect mercury, which is excreted in urine and feces, and correlate exposure with toxic effects. The current gold standard analytical methods are based on fluorescence or inductively coupled plasma mass spectrometry methods, but are expensive, time consuming, and are not easily accessible in countries where testing is needed. In this work, we report on a miniature electrochemical sensor that can rapidly detect mercury in urine at levels well below the US Biological Exposure Index (BEI) limit of 50 ppb (μg/L). The sensor is based on a thin-film gold electrode and anodic stripping voltammetry electroanalytical approach. The sensor successfully detected mercury at trace levels in urine, with a limit of detection of ∼15 ppb Hg in the linear range of 20–80 ppb. With the low-cost disposable sensors and portable instrumentation, it is well suited for point-of-care applications.  相似文献   
995.
In this study, tetracarboxylic manganese phthalocyanine coated nano-zinc oxide (MnC4Pc-ZnO) composite material was prepared by in-situ growth method and modified with indium tin oxide (ITO) glass electrode to construct a photoelectrochemical (PEC) sensor. A PEC sensor for the determination of amlodipine besylate (AB) was developed for the first time based on the principle of precipitation reaction between heavy metal ions and dihydropyridine and the recombination suppression effect of the material. The morphology and optical properties of the MnC4Pc-ZnO composites were characterized by scanning electron microscopy (SEM) and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS). Chronoamperometry (i-t) and electrochemical impedance spectroscopy (EIS) were used to study the PEC behavior of ITO electrodes modified by MnC4Pc-ZnO composite material. The study found that the MnC4Pc-ZnO composite material has a good photocurrent response to AB, and there was a good linear relationship between the concentration range of 75 nM-250 μM, the linear equation was I(μA)=−5.2×10−8×lgC+3.2×10−8 (r=0.9947), a limit of detection (LOD) of 20 nM. In addition, MnC4Pc-ZnO/ITO also has good selectivity and stability. The PEC sensor detects amlodipine besylate tablets, amlodipine besylate dispersible tablets, and biological samples, with standard addition recovery rates of 96.11 % and 103.96 %, respectively. The determination result has good accuracy, and the PEC sensor provides a new method for detecting AB.  相似文献   
996.
Two fluorescent molecular sensors CS1 and CS2 were designed and synthesized to probe the aggregate behavior of anionic surfactant SDS. CS1 was based on the photo-induced electron transfer (PET) mechanism, while CS2 was founded on the intramolecular charge transfer (ICT) mechanism. The photophysical properties of CS1–2 in anionic surfactant sodium dodecyl sulfate (SDS) solution were studied by fluorescence and UV–vis methods. The experimental results show that significant absorption and emission spectral responses of CS1 were observed with the addition of SDS: the absorbance and fluorescence intensity decreased first and then increased. The plot of fluorescence intensity of CS1 versus SDS concentration showed two break points, which might be ascribed to the critical micellar concentration (cmc) and the formation of premicelle (cac) aggregate, respectively. But the solution’s color of CS2 changed from yellow to red with increasing SDS concentrations. The large red-shift in both absorption (50 nm) and emission (55 nm) spectra of CS2 was resulted from the protonation of the electron accepting moiety (NC nitrogen), which enhanced the “push–pull” interaction of the ICT fluorophore. This was facilitated by the increase of local H+ concentration around SDS premicelle and micelle. As a consequence, pKa values of CS1 and CS2 were elevated in SDS micelle.  相似文献   
997.
An electrode of hydrated tungsten oxide (WO3?nH2O) embedded chitosan‐co‐polyaniline (CHIT‐co‐PANI) composite was electrochemically prepared on an indium tin oxide (ITO) coated glass surface using mineral acid as a supporting electrolyte. The resulting CHIT‐co‐PANI/WO3?nH2O/ITO electrode was characterized using ultraviolet‐visible spectroscopy (UV‐vis), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV), and scanning electron microscopy (SEM). The composite electrode exhibited a three‐dimensional nanofibrous structure with the diameter of the nanofibers ranging from 20 to 100 nm. The CHIT‐co‐PANI/WO3?nH2O/ITO electrode allowed for the low potential detection of NO2 gas in acidic medium. The NO2 gas sensing characteristics were studied by measuring change in the current with respect to concentration and time. Using the CHIT‐co‐PANI/WO3?nH2O/ITO electrode, NO2 gas was detected electrochemically without interference at pH 2.0 and 0.25 V vs. Ag/AgCl. The current of the electrochemical cell with the CHIT‐co‐PANI/WO3?nH2O/ITO electrode decreased linearly with an increase in NO2 gas concentration in a range from 100 to 500 ppb with a response time of eight seconds.  相似文献   
998.
Guiyun Xu  Jinshi Fan  Kui Jiao 《Electroanalysis》2008,20(11):1209-1214
The electrochemical property of dinuclear copper(II) complex containing dimethylglyoxime [Cu2(Hdmg)4] was studied with cyclic voltammetry. Cu2(Hdmg)4 had an irreversible oxidation peak in pH 5.0 B–R buffer solution at the stearic acid‐modified carbon paste electrode. Cyclic voltammetry, UV‐vis absorption spectra and viscosity measurements were used to study the interaction of Cu2(Hdmg)4 with herring fish sperm DNA. Cu2(Hdmg)4 interacts with the bases of DNA to form nonelectroactive adducts. The interaction of Cu2(Hdmg)4 with ssDNA was stronger than that of Cu2(Hdmg)4 with dsDNA because of the exposed bases of ssDNA. The gene sequence related to the BAR transgene in the transgenic corn was detected using Cu2(Hdmg)4 as electroactive indicator.  相似文献   
999.
We report here a nonenzymatic sensor by using a nanoporous platinum electrode to detect glucose directly. The electrode was fabricated by electrochemical deposition and dissolution of PtZn alloy in zinc chloride‐1‐ethyl‐3‐methylimidazolium chloride (ZnCl2‐EMIC) ionic liquid. Both SEM and electrochemical studies showed the evidences for the nanoporous characteristics of the as‐prepared Pt electrodes. Amperometric measurements allow observation of the electrochemical oxidation of glucose at 0.4 V (vs. Ag/AgCl) in pH 7.4 phosphate buffer solution. The sensor also demonstrates significant reproducibility in glucose detection; the higher the roughness factor of the Pt electrode, the lower the detection limit of glucose. The interfering species such as ascorbic acid and p‐acetamidophenol can be avoided by using a Pt electrode with a high roughness factor of 151. Overall, the nanoporous Pt electrode is promising for enzymeless detection of glucose at physiological condition.  相似文献   
1000.
A ferrocene‐labeled high molecular weight coenzyme derivative (PEI‐Fc‐NAD) and a thermostable NAD‐dependent L ‐lysine 6‐dehydrogenase (LysDH) from thermophile Geobacillus stearothermophilus were used to fabricate a reagentless L ‐lysine sensor. Both LysDH and PEI‐Fc‐NAD were immobilized on the surface of a gold electrode by consecutive layer‐by‐layer adsorption (LBL) technique. By the simple LBL method, the reagentless L ‐lysine sensor, with co‐immobilization of the mediator, coenzyme, and enzyme was obtained, which exhibited current response to L ‐lysine without the addition of native coenzyme to the analysis system. The amperometric response of the sensor was dependent on the applied potential, bilayer number of PEI‐Fc‐NAD/LysDH, and substrate concentration. A linear current response, proportional to L ‐lysine concentration in the range of 1–120 mM was observed. The response of the sensor to L ‐lysine was decreased by 30% from the original activity after one month storage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号