首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   529篇
  免费   5篇
  国内免费   49篇
化学   178篇
晶体学   53篇
力学   33篇
数学   26篇
物理学   293篇
  2024年   1篇
  2023年   11篇
  2022年   9篇
  2021年   12篇
  2020年   10篇
  2019年   5篇
  2018年   9篇
  2017年   6篇
  2016年   13篇
  2015年   10篇
  2014年   15篇
  2013年   28篇
  2012年   15篇
  2011年   26篇
  2010年   43篇
  2009年   23篇
  2008年   28篇
  2007年   48篇
  2006年   41篇
  2005年   14篇
  2004年   27篇
  2003年   26篇
  2002年   28篇
  2001年   21篇
  2000年   20篇
  1999年   17篇
  1998年   17篇
  1997年   7篇
  1996年   8篇
  1995年   2篇
  1994年   8篇
  1993年   1篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1983年   2篇
  1982年   5篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有583条查询结果,搜索用时 484 毫秒
31.
Li Zhang   《Physica B: Condensed Matter》2007,390(1-2):373-376
We characterize a method of heat-assisted magnetic probe recording on perpendicular media. Heating source is field emission current from a scanning tunneling microscope (STM) tip. Recording media are three kinds of magnetic films, Co/Pt, CoNi/Pt, and Co/Pd multilayers with different nucleation fields. Pulses with amplitude of 5 V were applied between the STM tip and the recording medium. Experiments show that magnetic marks with an average size of 180 nm were formed on both Co/Pt and CoNi/Pt films whose nucleation fields are greater than their saturation magnetization. No marks were observed on the Co/Pd film whose nucleation field is smaller than its saturation magnetization. A model is built to simulate the dynamic process of domain formation in probe-based magnetic recording system. Simulation results agree with experiments and it explains the effect of the nucleation field of medium in perpendicular recording.  相似文献   
32.
This paper addresses the issues of scaling and self-similarity in typical nanoparticle films. The role played by microscopic processes contributing to growth on these issues is probed. While we perform this investigation for a specific system viz., Pb1-xFexS nanoparticle films for clarity of the procedures, the analysis is general and can be applied to a variety of systems obtained using different deposition techniques.  相似文献   
33.
Surfactant-mediated epitaxial growth is studied with a realistic model, which includes three main kinetic processes: diffusion of adatoms on the surfactant terrace, exchange of adatoms with their underneath surfactant atoms, and reexchange in which an exchanged adatom resurfaces to the top of the surfactant layer. The scaling behavior of nucleus density and island size distributions in the initial stage of growth is investigated by using kinetic Monte Carlo simulations. The results show that the temperature dependence of nucleus density and island size distributions governed by the reexchanging-controlled nucleation at high temperatures exhibits similar scaling behavior to that obtained by the standard diffusion-mediated nucleation at low temperatures. However, at intermediate temperatures, the exchanging-controlled nucleation leads to an increase of nucleus density with temperature, while the island size distribution scales to a monotonically decreasing function, showing nonstandard scaling behavior.  相似文献   
34.
The initial nucleation stages during deposition of SiO2 by remote plasma enhanced chemical vapour deposition (PECVD) have been monitored by XPS inelastic peak shape analysis. Experiments have been carried out on two substrates, a flat ZrO2 thin film and a silicon wafer with a native silicon oxide layer on its surface. For the two substrates it is found that PECVD SiO2 grows in the form of islands. When the SiO2 particles reach heights close to 10 nm they coalesce and cover completely the substrate surface. The particle formation mechanism has been confirmed by TEM observation of the particles grown on silicon substrates. The kinetic Monte Carlo simulation of the nucleation and growth of the SiO2 particles has shown that formation of islands is favoured under PECVD conditions because the plasma species may reach the substrate surface according to off-perpendicular directions. The average energy of these species is the main parameter used to describe their angular distribution function, while the reactivity of the surface is another key parameter used in the simulations.  相似文献   
35.
Nucleation of 2D islands in Si/Si(1 1 1)-7 × 7 molecular beam epitaxy is studied using scanning tunneling microscopy (STM). A detailed analysis of the population of small amorphous clusters coexisting on the surface with epitaxial 2D islands has been performed. It is shown that small clusters tend to form pairs. The pairs serve as precursors for 2D islands as confirmed by direct STM observations of the smallest 2D islands covering two adjacent half-unit cells of the 7 × 7 reconstruction. It is proved with scaling arguments that the critical nucleus for 2D island formation consists not only of the pair itself, but also includes additional adatoms not belonging to the stable clusters.  相似文献   
36.
《Comptes Rendus Physique》2013,14(7):531-541
This is a review of the wetting properties of solid helium on various solid substrates. Due to its extreme purity and to its very fast growth dynamics, solid helium 4 is often considered as a model system in materials science. Several wetting phenomena have been studied with helium 4 crystals, namely contact angles on solid substrates with variable roughness, wetting on graphite where epitaxial growth takes place, the roughening transition as a function of film thickness, the wetting of grain boundaries by the liquid phase.  相似文献   
37.
Experiments designed to crystallize gas hydrate from dissolved CO2 in natural porous media are used to study nucleation under varying thermodynamic conditions. We recover quantitative information from these experiments using a stochastic model for the nucleation process. Estimates of the model parameters are used to determine the average time for nucleation as a function of temperature and composition.  相似文献   
38.
39.
The effect and efficiency of three nucleating agents, a sorbitol based clarifier, a traditional heterogeneous nucleating agent and poly(vinylcyclohexane) (PVCH) was studied in polypropylene (iPP) homopolymer. The nucleating agents were added to iPP in different amounts; PVCH in 0–200 ppm, while the other two in 0–2000 ppm. Optical and mechanical properties were determined on injection molded plates or bars, respectively. Nucleation efficiency was studied by thermal analysis, while structure was characterized by polarized light (PLM), scanning electron (SEM) and atomic force microscopy (AFM). Nucleus density was calculated using the method of Lamberti, which is based on the kinetic theory of the crystallization developed by Lauritzen and Hoffmann. The results proved that the nucleating agents modify properties in different ways and extent. PVCH is very efficient already at small concentrations and increases the stiffness of iPP considerably more than the other two compounds. On the other hand, the clarifier and the traditional nucleating agent induce better optical properties even at smaller efficiency. The structure developing in the presence of the three nucleating agents is also different. The clarifier forms a network in iPP and induces the formation of a microcrystalline structure according to the former literature data. Microspherulitic structure develops in the presence of the heterogeneous nucleating agent studied, while relatively large supermolecular units form in iPP nucleated by PVCH even under the conditions of injection molding. The calculation of nucleus density by existing models and the comparison of the results to optical properties proved that haze is determined by the size of the supermolecular units of the polymer and this latter depends on nucleus density.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号