首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   871篇
  免费   0篇
化学   869篇
物理学   2篇
  2020年   37篇
  2019年   100篇
  2018年   22篇
  2017年   84篇
  2016年   23篇
  2015年   42篇
  2014年   30篇
  2013年   24篇
  2012年   55篇
  2011年   67篇
  2010年   26篇
  2009年   15篇
  2008年   59篇
  2007年   40篇
  2006年   42篇
  2005年   38篇
  2004年   40篇
  2003年   36篇
  2002年   32篇
  2001年   19篇
  2000年   13篇
  1999年   4篇
  1998年   6篇
  1997年   6篇
  1996年   6篇
  1995年   2篇
  1979年   2篇
  1973年   1篇
排序方式: 共有871条查询结果,搜索用时 234 毫秒
41.
42.
43.
44.
45.
Carbon aerogels (CAs) with 3D interconnected networks hold promise for application in areas such as pollutant treatment, energy storage, and electrocatalysis. In spite of this, it remains challenging to synthesize high-performance CAs on a large scale in a simple and sustainable manner. We report an eco-friendly method for the scalable synthesis of ultralight and superporous CAs by using cheap and widely available agarose (AG) biomass as the carbon precursor. Zeolitic imidazolate framework-8 (ZIF-8) with high porosity is introduced into the AG aerogels to increase the specific surface area and enable heteroatom doping. After pyrolysis under inert atmosphere, the ZIF-8/AG-derived nitrogen-doped CAs show a highly interconnected porous mazelike structure with a low density of 24 mg cm−3, a high specific surface area of 516 m2 g−1, and a large pore volume of 0.58 cm−3 g−1. The resulting CAs exhibit significant potential for application in the adsorption of organic pollutants.  相似文献   
46.
The low catalytic activity and poor mass transport capacity of platinum group metal free (PGM-free) catalysts seriously restrict the application of proton-exchange membrane fuel cells (PEMFCs). Catalysts derived from Fe-doped ZIF-8 could in theory be as active as Pt/C thanks to the high intrinsic activity of FeN4; however, the micropores fail to meet rapid mass transfer. Herein, an ordered hierarchical porous structure is introduced into Fe-doped ZIF-8 single crystals, which were subsequently carbonized to obtain an FeN4-doped hierarchical ordered porous carbon (FeN4/HOPC) skeleton. The optimal catalyst FeN4/HOPC-c-1000 shows excellent performance with a half-wave potential of 0.80 V in 0.5 m H2SO4 solution, only 20 mV lower than that of commercial Pt/C (0.82 V). In a real PEMFC, FeN4/HOPC-c-1000 exhibits significantly enhanced current density and power density relative to FeN4/C, which does not have an optimized pore structure, implying an efficient utilization of the active sites and enhanced mass transfer to promote the oxygen reduction reaction (ORR).  相似文献   
47.
Supramolecular polymers that can heal themselves automatically usually exhibit weakness in mechanical toughness and stretchability. Here we exploit a toughening strategy for a dynamic dry supramolecular network by introducing ionic cluster-enhanced iron-carboxylate complexes. The resulting dry supramolecular network simultaneous exhibits tough mechanical strength, high stretchability, self-healing ability, and processability at room temperature. The excellent performance of these distinct supramolecular polymers is attributed to the hierarchical existence of four types of dynamic combinations in the high-density dry network, including dynamic covalent disulfide bonds, noncovalent H-bonds, iron-carboxylate complexes and ionic clustering interactions. The extremely facile preparation method of this self-healing polymer offers prospects for high-performance low-cost material among others for coatings and wearable devices.  相似文献   
48.
The synthesis of hierarchical nanosized zeolite materials without growth modifiers and mesoporogens remains a substantial challenge. Herein, we report a general synthetic approach to produce hierarchical nanosized single-crystal aluminophosphate molecular sieves by preparing highly homogeneous and concentrated precursors and heating at elevated temperatures. Accordingly, aluminophosphate zeotypes of LTA (8-rings), AEL (10-rings), AFI (12-rings), and -CLO (20-rings) topologies, ranging from small to extra-large pores, were synthesized. These materials show exceptional properties, including small crystallites (30–150 nm), good monodispersity, abundant mesopores, and excellent thermal stability. A time-dependent study revealed a non-classical crystallization pathway by particle attachment. This work opens a new avenue for the development of hierarchical nanosized zeolite materials and understanding their crystallization mechanism.  相似文献   
49.
Purely organic materials showing room temperature phosphorescence (RTP) and ultralong RTP (OURTP) have recently attracted much attention. However, it is challenging to integrate circularly polarized luminescence (CPL) into RTP/OURTP. Here, we show a strategy to realize CPL-active OURTP (CP-OURTP) by binding an achiral phosphor group directly to the chiral center of an ester chain. Engineering of this flexible chiral chain enables efficient chirality transfer to carbazole aggregates, resulting in strong CP-OURTP with a lifetime of over 0.6 s and dissymmetry factor of 2.3×10−3 after the conformation regulation upon photo-activation. The realized CP-OURTP is thus stable at room temperature but can be deactivated quickly at 50 °C to CP-RTP with high CPL stability during the photo-activation/thermal-deactivation cycles. Based on this extraordinary photo/thermal-responsive and highly reversible CP-OURTP/RTP, a CPL-featured lifetime-encrypted combinational logic device has been successfully established.  相似文献   
50.
Applying interlayers is the main strategy to address the large area specific resistance (ASR) of Li/garnet interface. However, studies on eliminating the Li2CO3 and LiOH interfacial lithiophobic contaminants are still insufficient. Here, thermal-decomposition vapor deposition (TVD) of a carbon modification layer on Li6.75La3Zr1.75Ta0.25O12 (LLZTO) provides a contaminant-free surface. Owing to the protection of the carbon layer, the air stability of LLZTO is also improved. Moreover, owing to the amorphous structure of the low graphitized carbon (LGC), instant lithiation is achieved, and the ASR of the Li/LLZTO interface is reduced to 9 Ω cm2. Lithium volatilization and Zr4+ reduction are also controllable during TVD. Compared with its high graphitized carbon counterpart (HGC), the LGC-modified Li/LLZTO interface displays a higher critical current density of 1.2 mA cm−2, as well as moderate Li plating and stripping, which provides enhanced polarization voltage stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号