首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   28篇
  国内免费   75篇
化学   203篇
晶体学   10篇
力学   1篇
综合类   1篇
物理学   75篇
  2024年   1篇
  2023年   4篇
  2022年   3篇
  2021年   10篇
  2020年   10篇
  2019年   11篇
  2018年   8篇
  2017年   10篇
  2016年   13篇
  2015年   10篇
  2014年   11篇
  2013年   18篇
  2012年   18篇
  2011年   21篇
  2010年   17篇
  2009年   15篇
  2008年   14篇
  2007年   11篇
  2006年   14篇
  2005年   5篇
  2004年   11篇
  2003年   3篇
  2002年   9篇
  2001年   6篇
  2000年   6篇
  1999年   6篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1985年   1篇
排序方式: 共有290条查询结果,搜索用时 22 毫秒
71.
A nickel oxide film with a thickness of 445 nm was deposited from nickel acetate precursor using the sol–gel dip coating method. The NiO films exhibit optical transmission of 84% at 550 nm and direct energy gap (E gd) value is 3.64 eV. The FTIR spectrum of the films confirms the formation of Ni–O bond. XRD spectrum reveals the formation of nano crystallites along (111) and (200) planes with a particle size of 17 nm. The electrochromic properties have been studied using cyclic voltammetric (CV) technique. The optical transmission of a glass/FTO/NiO/ZrO2/FTO/glass EC device is reported.  相似文献   
72.
The effect of thickness of oxide-sensing electrode (SE) on NO2 sensitivity of the planar sensor based on yttria-stabilized zirconia (YSZ) was examined at high temperatures. The sensitivity of the sensor increased with decreasing thickness of SE, and the highest sensitivity was obtained by using the thinnest layer of Cr2O3–SE (2.7 μm) at 700 °C. In the case of NiO–SE, the highest sensitivity was observed for the sensor using the 4 μm-thick SE even at high temperature of 850 °C. Based on the results of the measurements for the complex impedances, the polarization curves, and the gas-phase NO2 decomposition catalysis, it was confirmed that the catalytic activity to the gas-phase NO2 decomposition on the oxide–SE matrix played an important role in determining the NO2 sensitivity of the present sensors. This artice was accidentally published twice. This is the second publication, please cite only the authoritative first one which is available at . An additional erratum is available at . An erratum to this article can be found at  相似文献   
73.
采用浸渍法、溶胶 凝胶过程与普通干燥、超临界干燥过程相结合的方法制备了具有不同结构特点的NiO CeO2 Al2 O3催化剂 ,分别为浸渍型催化剂 (iNCA)、干凝胶催化剂 (xNCA)和气凝胶催化剂 (aNCA) ,利用BET、TEM、XRD、TPR、NH3 TPD、H2 TPD等方法对各催化剂样品的物化性质进行了考察。研究结果表明 ,经 82 3K焙烧后 ,镍含量为 9%的各催化剂样品中镍物种均分散良好 ;与iNCA相比 ,以溶胶 凝胶法为基础制备的xNCA和aNCA中镍物种与载体的相互作用强并且存在状态均一 ;三种催化剂中 ,气凝胶样品具有比表面积高、堆密度低、表面酸中心数多及表面镍分散度高的特点。  相似文献   
74.
纳米氧化镍的固相合成   总被引:1,自引:0,他引:1  
纳米氧化镍的固相合成;NiO;纳米粒子;固相反应;合成机理  相似文献   
75.
76.
Octahedrally shaped NiO powders have been synthesized via a one‐step composite‐hydroxide‐mediated method without any surfactant. The synthesized materials are characterized by XRD, EDS, TEM and FESEM techniques. Each particle exhibited a nearly perfect octahedron shape with sharp edges and corners as well as smooth surfaces. The octahedral NiO particles performed better gas‐sensitivity toward ethanol than that of NiO nanopowders, which was attributed to the exposed {111} facets of octahedron. The result was confirmed by the first‐principle calculation which indicated that the (111) facet was more active than (100) and (110) facet.  相似文献   
77.
Cu-doped nickel oxide (NiO) thin films were prepared by electrochemial deposition (cathodic deposition) technique onto the fluorine doped tin oxide (F: SnO2; FTO) coated glass substrates from organic solutions. Effects of Cu content on the morphology, structure, optical and electrochromic properties of NiO films were investigated by means of scanning electron microscope (SEM), X-ray diffraction (XRD), ultraviolet-visible spectrophotometer (UV-vis) and cyclic voltammetry (CV), respectively. SEM images indicated the formation of nanorods after Cu was added. The films were formed with amorphous or short-range ordered NiO grains and a trace of face-centered cubic NixCu1−xO confirmed by XRD. The transmittances of both bleached state and colored state were significantly lowered when Cu was added. The NiO films doped with Cu (the molar ratio was 1/8) exhibited the optimum electrochromic behavior with a variation of transmittance (ΔT) up to ∼80% at the wavelength range of 350-600 nm. Cu doping reduces the response time for both the coloring and bleaching states, and the reversibility of the redox reaction was increased as well.  相似文献   
78.
Electrochromic properties of chemically bath deposited nanoporous NiO thin films were investigated as a function of film thickness using Ni sulphate precursor, aqueous ammonia and potassium persulphate as complexing and oxidizing agents respectively. The films were characterized for their structural, morphological, optical and electrochromic properties using X-ray diffraction, scanning electron microscopy, FT-IR spectroscopy, cyclic voltammetry, chronoamperometry and optical transmittance studies. X-ray diffraction patterns show that the films are polycrystalline, consisting of NiO cubic phase. Infrared spectroscopy results show the presence of free hydroxyl ion and water in NiO thin films. SEM micrographs revealed nanoporous nature composed of interconnected nanoporous network, forming well defined 3D nano envelopes. The optical band gap energy was found to be decreased from 3.22 to 2.80 eV with increasing film thickness. The electrochromic properties of all the films were investigated in aqueous (KOH) and non aqueous (LiClO4-PC) electrolyte by means of cyclic voltammetry (CV), chronocoulometry (CC) and optical studies. The transmittance modulations or optical density differences during the coloring/bleaching process were found to be increased with the film thickness. This increment in optical differences led to an increase in coloration efficiency (CE) to about 95 cm2/C, which is two times more than that observed in KOH and response time of 2.9 s for bleaching (reduction) and 3.5 s for coloration (oxidation) observed for the film deposited at 60 min with excellent electrochemical stability up to 3000 c/b cycles in LiClO4-PC electrolyte.  相似文献   
79.
Sol-gel based alumina powders with catalytic applications   总被引:1,自引:0,他引:1  
The sol-gel process provides a new approach to the preparation of oxide materials and offers many advantages for making catalysts. Since homogeneous mixing can be achieved at the molecular scale, the chemical reactivity of the oxide surface can be greatly enhanced; thus powders with high surface area and optimized pore size distribution can be obtained at low temperatures. In the present work NiO/Al2O3 sol-gel catalysts were obtained by simultaneous gelation of aluminium isopropoxide and nickel nitrate. A comparative study with pure sol-gel alumina was also realized. By physical-structural studies the changes induced by the introduction of the Ni precursor, before and after aluminium alkoxide hydrolysis were highlighted. The introduction of Ni at the beginning of the reaction favors γ-Al2O3 crystallization. When Ni is added at the end of reaction, it delays the alumina crystallization and induces the disorder of the lattice. The obtained Ni doped sol-gel derived alumina has been used as catalyst in the finished form for glycerol reforming to generate H2 for fuel cell applications. Some evaluation results of Ni-doped alumina combined with TiO2 in photocatalytic glycerol reforming reaction have been included.  相似文献   
80.
Precious non-noble metals have been constantly attracting research attention in order to realize an inexpensive, extra active and more stable electrocatalysts in terms of various oxidation states and structures for their applications in oxidation (splitting) of water. In the present work graphene oxide incorporated, MnO2-NiO composite metal oxide nanoflakes were synthesized on the stainless steel substrate using efficient electrodeposition route in alkaline media and drop casting method with further annealing treatment at 400 °C for 4 h. Initially MnO2-NiO nanoflakes were deposited using different cyclic sweep rates, later graphene oxide suspension was drop casted on the MnO2-NiO nanoflakes and subsequently subjected to annealing at 200 °C for 2 h. The prepared electrode material is denoted as GO/MnO2-NiO/SS and used as an electrocatalyst for oxygen evolution. Field emission scanning electron microscopy, transmission electron microscopy, Energy dispersive electron spectroscopy and X-ray diffraction spectroscopy were used to study the crystalline nature and morphologies of the deposited films. The electrochemical properties of the electrode material were investigated using cyclic voltammetry and linear sweep voltammetry. The electrode exhibits low overpotential and small Tafel slope of 379 mV and 47.84 mVdec−1 at the current density of 10 mA cm−2 in alkaline (KOH) medium. In addition, the electrode shows a long time stability of 28800 s. Hence, the present study suggests that the GO incorporated Mn-Ni bimetal oxide modified electrode is suitable electrode material for oxygen evolution reaction (OER), owing to its facile preparation, inexpensive, easy handling and high active nature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号