首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   22篇
  国内免费   41篇
化学   172篇
晶体学   3篇
综合类   4篇
物理学   28篇
  2023年   8篇
  2022年   12篇
  2021年   15篇
  2020年   15篇
  2019年   14篇
  2018年   14篇
  2017年   8篇
  2016年   9篇
  2015年   4篇
  2014年   3篇
  2013年   21篇
  2012年   6篇
  2011年   5篇
  2010年   9篇
  2009年   10篇
  2008年   10篇
  2007年   6篇
  2006年   10篇
  2005年   5篇
  2004年   3篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1981年   1篇
排序方式: 共有207条查询结果,搜索用时 15 毫秒
91.
Thin films of permalloy (Ni80Fe20) were prepared using an Ar+N2 mixture with magnetron sputtering technique at ambient temperature. The film prepared with only Ar gas shows reflections corresponding to the permalloy phase in X-ray diffraction (XRD) pattern. The addition of nitrogen during sputtering results in broadening of the peaks in XRD pattern, which finally leads to an amorphous phase. The M-H loop for the sample prepared with only Ar gas is matching well with the values obtained for the permalloy. For the samples prepared with increased nitrogen partial pressure the magnetic moment decreased rapidly and the values of coercivity increased. The polarized neutron reflectivity measurements (PNR) were performed in the sample prepared with only Ar gas and with nitrogen partial pressure of 5 and 10%. It was found that the spin-up and spin-down reflectivities show exactly similar reflectivity for the sample prepared with Ar gas alone, while PNR measurements on 5 and 10% sample show splitting in the spin-up and spin-down reflectivity.   相似文献   
92.
Summary Calcined CoMgAl LDHs and a Co-impregnated LDH were characterized by XRD, N2 physisorption, TPR and ICP elemental analysis, then tested in the selective catalytic reduction (SCR) of NO with ammonia. Cobalt deposited by impregnation on LDH leads to the more active and selective catalyst. On this type of catalyst nearly 80% of conversion and selectivity to N2 were reached at 578 K with a volume space velocity of 2200 h-1.  相似文献   
93.
铝表面ZnO/Zn-Al LDH微米-纳米结构及其超级疏水性能   总被引:1,自引:0,他引:1  
蒋建  胡小艳  黄新堂 《无机化学学报》2007,23(10):1781-1783
A multi-dimension bionic-like super-hydrophobic material, ZnO/Zn-Al LDH, was fabricated by modifying the Al surface in alkaline conditions at room temperature. After coated by ZnO/Zn-Al LDH, the aluminum surface shows both micro- and nano-bionic-like structures of lotus leaves.  相似文献   
94.
In this paper, the electrochemical performances of a layered double hydroxide, [Ni4Al(OH)10]NO3, of different particle sizes are studied. The results show that the particle size of the sample has evident effects on its discharge capacity at high current density, although a larger capacity may be observed for the bigger particles when they are discharged at lower current densities, e.g. 0.2 A g−1. However, the capacity decreases more quickly than that of the sample in smaller particle size when the current density increases. For example, the discharge capacity of the smallest particle remains as high as 180 mAh·g−1 even at very high current density, e.g. 4.0 A g−1. The results also show that long time soaked electrodes in 7 mol l−1 KOH have improved performance, especially for the hydrothermal samples. It also seems that there is an optimal size for materials, which can maintain their performance for longer time.  相似文献   
95.
The immobilisation of enzymes on an electrode surface, in such a manner that they retain both substrate specificity and high levels of catalytic activity, is of great importance in bioelectrochemistry. This includes areas such as the development of enzyme-catalysed fuel cell electrodes, biosensors and other biotechnological applications. We have investigated the catalytic activity of hexahistidine tagged variants of lactate dehydrogenase (EC 1.1.1.27) from the thermophile Bacillus stearothermophilus both in solution and when immobilised on poly(aniline)-poly(acrylate) (PANi-PAA) or poly(aniline)-poly(vinyl sulphonate) (PANi-PVS) composite films. Both the C- and N-terminally tagged enzymes are readily immobilised on the modified electrode and catalyse the conversion of lactate and NAD+ to pyruvate and NADH. The NADH that is generated can be readily oxidised at the PANi-modified electrode surface.In solution, the activity of the C-tagged enzyme (LDH-CHis) was some 30% less that of the wild-type under comparable conditions, whereas the N-tagged enzyme was found to possess essentially the same activity as the wild-type. However, when the enzymes were immobilised on PANi-PAA and PANi-PVS the C-tagged enzyme films showed a higher NADH-dependent current than the wild-type LDH whilst the N-tagged enzyme had the highest of the three. In addition, the C-tagged enzyme film appeared more stable than the wild-type LDH-PANi film. A novel immobilisation chemistry of the enzyme is proposed to account for these observations.  相似文献   
96.
Poly(vinyl chloride)/layered double hydroxide (LDH) composite was prepared by mixing 4 wt% Zn2Al-CO3-LDH with PVC and fluxing at 180 °C. The thermal decomposition behaviour of the LDH + PVC composite in air and nitrogen environments was systematically investigated. We found that mixing Zn2Al-CO3-LDH into PVC facilitates dehydrochlorination from ca. 300 to 270 °C but reduces the reaction extent to leave more chlorine on the polyene backbones both in air and N2. We have also found that at 400-550 °C, both in air and N2, LDH assists the formation of char-like materials and decreases the release of volatile hydrocarbons. From 550 to 800 °C, the char-like materials are mostly retained in N2 while they are almost completely thermo-oxidized (burned) in air. Thus, addition of Zn2Al-CO3-LDH to PVC does not increase the thermal stability, but does promote charring to retard the generation of flame. The influence of LDH on PVC thermal properties has been also addressed mechanically.  相似文献   
97.
A study was conducted to describe and quantify how substitution of the divalent cation and interlayer charge compensating anions affect the CO2 adsorptive capacity of various hydrotalcite-like compounds (HTlcs). Physical and chemical properties of the HTlcs were evaluated using a number of methods and the CO2 adsorption rate and capacity were measured at elevated temperature (603 K). The results showed that the synthetic analogue of the naturally occurring hydrotalcite mineral, [Mg0.73Al0.27(OH)2](CO3)0.13xH2O, had the best overall adsorption capacity and kinetics. The stability of the adsorption capacity was tested by subjecting the model HTlc to 10 equilibrium adsorption and desorption cycles. At the end of the cycle, the HTlc had maintained approximately sixty-five percent of its initial capacity. Temperature programmed desorption of CO2 was used to quantify the surface basicity of the various HTlcs. The results showed that the reversible physisorption portion of the CO2 isotherm was correlated to the number of surface basic sites on the HTlcs.  相似文献   
98.
W.M. Shaheen   《Thermochimica Acta》2008,470(1-2):18-26
The effects of calcination temperature and doping with K2O on solid–solid interactions and physicochemical properties of NiO/Fe2O3 system were investigated using TG, DTA and XRD techniques. The amounts of potassium, expressed as mol% K2O were 0.62, 1.23, 2.44 and 4.26. The pure and variously doped mixed solids were thermally treated at 300, 500, 750, 900 and 1000 °C. The catalytic activity was determined for each solid in H2O2 decomposition reaction at 30–50 °C. The results obtained showed that the doping process much affected the degree of crystallinity of both NiO and Fe2O3 phases detected for all solids calcined at 300 and 500 °C. Fe2O3 interacted readily with NiO at temperature starting from 700 °C producing crystalline NiFe2O4 phase. The degree of reaction propagation increased with increasing calcination temperature. The completion of this reaction required a prolonged heating at temperature >900 °C. K2O-doping stimulates the ferrite formation to an extent proportional to its amount added. The stimulation effect of potassium was evidenced by following up the change in the peak height of certain diffraction lines characteristic NiO, Fe2O3, NiFe2O4 phases located at “d” spacing 2.08, 2.69 and 2.95 Å, respectively. The change of peak height of the diffraction lines at 2.95 Å as a function of firing temperature of pure and doped mixed solids enabled the calculation of the activation energy (ΔE) of the ferrite formation. The computed ΔE values were 120, 80, 49, 36 and 25 kJ mol−1 for pure and variously doped solids, respectively. The decrease in ΔE value of NiFe2O4 formation as a function of dopant added was not only attributed to an effective increase in the mobility of reacting cations but also to the formation of potassium ferrite. The calcination temperature and doping with K2O much affected the catalytic activity of the system under investigation.  相似文献   
99.
A novel flame retardant system of poly(vinyl alcohol) (PVA) is prepared via using ammonium polyphosphate (APP) and layered double hydroxide (LDH). The flammability of PVA composites containing APP-based LDH at a 15 wt.% global percentage showed that the flame retardancy of all PVA/APP/LDH samples increase with the increase of LDH concentration in the range of 0.1-1.0 wt.%, and reach a LOI value of up to 33 and UL-94 V-0 rating for most composites. Thermo-gravimetric analysis reveals that PVA/APP/LDH samples show higher initial decomposition temperature in comparison with PVA/APP composite. The morphology and structures of residues generated during LOI test were investigated by scanning electronic microscopy (SEM). Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were used to analyze the composition of the residue formed after thermo-oxidation to support a fundamental analysis for the mechanism of char formation. The test of mechanical properties demonstrated that LDH can enhance tensile strength, Young's modulus and elongation at break of PVA/APP composites.  相似文献   
100.
《中国化学会会志》2018,65(7):868-874
In this work, the NiFe2O4@TiO2/reduced graphene oxide (RGO) ternary nanocomposites with high saturation magnetization and catalytic efficiency have been synthesized through the following steps. First, graphene oxide was prepared using the modified Hummer's method. Second, the NiFe2O4 nanoparticles were successfully prepared using the hydrothermal method. Third, the core shell‐structured NiFe2O4@TiO2/RGO nanocomposite precursors were easily obtained through hydrolysis reaction. The morphology of NiFe2O4@TiO2/RGO nanocomposites was characterized from scanning electron microscope (SEM) and transmission electron microscope (TEM) images. Moreover, the results of X‐ray diffraction (XRD) patterns proved that the TiO2 coating shell consisted of anatase. The vibrating sample magnetometer (VSM) measurements showed that the saturation magnetization value of NiFe2O4@TiO2/RGO ternary nanocomposites was 25 emu/g. The X‐ray photoelectron spectroscopy (XPS) analysis confirmed that only part of the graphite oxide (GO) was reduced to RGO in the ternary nanocomposite. The degradation experiments proved that NiFe2O4@TiO2/RGO nanocomposite exhibited the high catalytic efficiency and outstanding recyclable performance for rhodamine B (RhB).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号