首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   22篇
  国内免费   41篇
化学   172篇
晶体学   3篇
综合类   4篇
物理学   28篇
  2023年   8篇
  2022年   12篇
  2021年   15篇
  2020年   15篇
  2019年   14篇
  2018年   14篇
  2017年   8篇
  2016年   9篇
  2015年   4篇
  2014年   3篇
  2013年   21篇
  2012年   6篇
  2011年   5篇
  2010年   9篇
  2009年   10篇
  2008年   10篇
  2007年   6篇
  2006年   10篇
  2005年   5篇
  2004年   3篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1981年   1篇
排序方式: 共有207条查询结果,搜索用时 937 毫秒
31.
This paper describes the development of an amperometric biosensor based on galactose oxidase (GAOx) immobilization within a laponite clay film deposited on Carbon Screen‐Printed Electrodes modified by electrodeposited Prussian Blue and coated with poly‐(O‐phenylenediamine) (PPD/PB/CSPEs). Amperometric performances of GAOx@laponite/PPD/PB/CSPEs bioelectrodes were determined using several GAOx substrates. Using these modified electrodes the reduction of enzymatically generated hydrogen peroxide was performed at ?0.2 V vs. Ag‐AgCl. In an initial attempt, E.Coli transketolase activity on its immobilized form was followed using a bienzymatic GAOx‐TK biosensor.  相似文献   
32.
To understand the molecular details of O2‐tolerant hydrogen cycling by a soluble NAD+‐reducing [NiFe] hydrogenase, we herein present the first bioinspired heterobimetallic S‐oxygenated [NiFe] complex as a structural and vibrational spectroscopic model for the oxygen‐inhibited [NiFe] active site. This compound and its non‐S‐oxygenated congener were fully characterized, and their electronic structures were elucidated in a combined experimental and theoretical study with emphasis on the bridging sulfenato moiety. Based on the vibrational spectroscopic properties of these complexes, we also propose novel strategies for exploring S‐oxygenated intermediates in hydrogenases and similar enzymes.  相似文献   
33.
 以反滴共沉定法制备了NiFe2O4纳米微粉,并在不同压力下将其压制成纳成米固体,然后用XRD谱和ESR谱研究了NiFe2O4纳米固体结构和界百状态随压制压力的变化。实验结果表明,NiFe2O4纳米固体的结构在高压下没有明显的变化,但其ESR谱的共振线宽和g因子值随着压力升高均表示出先逐渐增大至最大值,然手缓慢下降的规律。这种变化可以归因于纳米固体内部界面离子间的磁相互作用在压力的下所发生和变化。这引起实验结果境示,对于NiFe2O4纳米固体而言,最佳的成型压力是4.5 GPa,在此压力下,NiFe2O4纳米粒子既可以被压制成致密的纳米固体,又能够保留下它们的纳米结构和纳米性质。  相似文献   
34.
Giant magnetoimpedance (GMI) effect on NiFe thin film is very promising due to its application in developing the magnetic field sensors with highly sensitivity and low cost. In this paper, the single layered NiFe thin film and NiFe/Cu/NiFe thin film with a meander structure are prepared by the MEMS technology. The influences of sputtering parameters, film structure and conductor layer width on GMI effect in NiFe single layer and meander NiFe/Cu/NiFe film are investigated. Maximum of the GMI ratio in single layer and sandwich film is 5% and 64%, respectively. The results obtained are useful for developing the high-performance magnetic sensors based on NiFe thin film.  相似文献   
35.
Raman spectroscopy has been used to characterise synthetic mixed carbonate and molybdate hydrotalcites of formula Mg6Al2(OH)16((CO3)2−,(MoO4)2−)·4H2O. The spectra have been used to assess the molecular assembly of the cations and anions in the hydrotalcite structure. The spectra may be conveniently subdivided into spectral features on the basis of the carbonate anion, the molybdate anion, the hydroxyl units and water units. Bands are assigned to the hydroxyl stretching vibrations of water. Three types of carbonate anions are identified: (1) carbonate hydrogen‐bonded to water in the interlayer, (2) carbonate hydrogen‐bonded to the hydrotalcite hydroxyl surface, (3) free carbonate anions. It is proposed that the water is highly structured in the hydrotalcite, as it is hydrogen bonded to both the carbonate and the hydroxyl surface. The spectra have been used to assess the contamination of carbonate in an open reaction vessel in the synthesis of a molybdate hydrotalcite of formula Mg6Al2(OH)16((CO3)2−, (MoO4)2−)·4H2O. Bands are assigned to carbonate and molybdate anions in the Raman spectra. Importantly, the synthesis of hydrotalcites from solutions containing molybdate provides a mechanism for the removal of this oxy‐anion. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
36.
The influence of reaction temperature and time on the hydrothermal dissolution-precipitation synthesis of hydrotalcite was investigated. Untreated MgO, Al(OH)3 and NaHCO3 were used. An industrially beneficial, economically favourable, environmentally friendly, zero effluent synthesis procedure was devised based on green chemistry principles, in which the salt-rich effluent typically produced was eliminated by regenerating the sodium bicarbonate in a full recycle process. It was found that the formation of hydromagnesite dominates at low temperatures independent of reaction time. With an increase in reaction time and temperature, hydromagnesite decomposes to form magnesite. At low temperatures, the formation of hydrotalcite is limited by the solubility of the Al(OH)3. To achieve a hydrotalcite yield of 96%, a reaction temperature of 160°C for 5?h is required. A yield higher than 99% was achieved at 180°C and 5?h reaction time, producing an layered double hydroxide with high crystallinity and homogeneity.  相似文献   
37.
Exploring materials with regulated local structures and understanding how the atomic motifs govern the reactivity and durability of catalysts are a critical challenge for designing advanced catalysts. Herein we report the tuning of the local atomic structure of nickel–iron layered double hydroxides (NiFe‐LDHs) by partially substituting Ni2+ with Fe2+ to introduce Fe‐O‐Fe moieties. These Fe2+‐containing NiFe‐LDHs exhibit enhanced oxygen evolution reaction (OER) activity with an ultralow overpotential of 195 mV at the current density of 10 mA cm?2, which is among the best OER catalytic performance to date. In‐situ X‐ray absorption, Raman, and electrochemical analysis jointly reveal that the Fe‐O‐Fe motifs could stabilize high‐valent metal sites at low overpotentials, thereby enhancing the OER activity. These results reveal the importance of tuning the local atomic structure for designing high efficiency electrocatalysts.  相似文献   
38.
3-dimensional (3D) Fe−Co−LDH/MXene composite was synthesized by in-situ synthesis and assembly of Fe−Co−LDH rod around MXene under hydrothermal condition. Due to the unique 3D configuration and good conductivity, the obtained Fe−Co−LDH/MXene modified glassy carbon electrode (Fe−Co−LDH/MXene/GCE) showed excellent electrochemical activity for As(III) detection. Via square-wave anodic stripping voltammetry, the response current on Fe−Co−LDH/MXene/GCE had good linear relationship with As(III) concentrations (1∼1000 ppt) with superior sensitivity (0.22 μA ppt−1 cm−2) and low detection limit (0.9 ppt). The mechanism of As(III) adsorption was demonstrated. The electrode showed excellent anti-interference ability. Real water sample analysis demonstrated the Fe−Co−LDH/MXene/GCE was deployable in aqua-system.  相似文献   
39.
It is challenging to design one non-noble material with balanced bifunctional performance for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) for commercial sustainability at a low cost since the different electrocatalytic mechanisms are not easily matchable for each other. Herein, a self-standing hybrid system Ni18Fe12Al70, consisting of Ni2Al3 and Ni3Fe phases, was constructed by laser-assisted aluminum (Al) incorporation towards full water splitting. It was found that the incorporation of Al could effectively tune the morphologies, compositions and phases. The results indicate that Ni18Fe12Al70 delivers an extremely low overpotential to trigger both HER (η100=188 mV) and OER (η100=345 mV) processes and maintains a stable overpotential for 100 h, comparable to state-of-the-art electrocatalysts. The synergistic effect of Ni2Al3 and Ni3Fe alloys on the HER process is confirmed based on theoretical calculation.  相似文献   
40.
Full understanding to the origin of the catalytic performance of a supported nanocatalyst from the points of view of both the active component and support is significant for the achievement of high performance. Herein, based on a model electrocatalyst of single-iridium-atom-doped iron (Fe)-based layered double hydroxides (LDH) for oxygen evolution reaction (OER), we reveal the first completed origin of the catalytic performance of such supported nanocatalysts. Specially, besides the activity enhancement of Ir sites by LDH support, the stability of surface Fe sites is enhanced by doped Ir sites: DFT calculation shows that the Ir sites can reduce the activity and enhance the stability of the nearby Fe sites; while further finite element simulations indicate, the stability enhancement of distant Fe sites could be attributed to the much low concentration of OER reactant (hydroxyl ions, OH) around them induced by the much fast consumption of OH on highly active Ir sites. These new findings about the interaction between the main active components and supports are applicable in principle to other heterogeneous nanocatalysts and provide a completed understanding to the catalytic performance of heterogeneous nanocatalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号