首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70468篇
  免费   12258篇
  国内免费   2945篇
化学   68459篇
晶体学   911篇
力学   1748篇
综合类   128篇
数学   5611篇
物理学   8814篇
  2024年   39篇
  2023年   159篇
  2022年   511篇
  2021年   689篇
  2020年   965篇
  2019年   2739篇
  2018年   2537篇
  2017年   3162篇
  2016年   3465篇
  2015年   5760篇
  2014年   5614篇
  2013年   7569篇
  2012年   6179篇
  2011年   5718篇
  2010年   4708篇
  2009年   4614篇
  2008年   4869篇
  2007年   4267篇
  2006年   3917篇
  2005年   3747篇
  2004年   3074篇
  2003年   2701篇
  2002年   3293篇
  2001年   1704篇
  2000年   1554篇
  1999年   759篇
  1998年   165篇
  1997年   148篇
  1996年   125篇
  1995年   137篇
  1994年   92篇
  1993年   96篇
  1992年   87篇
  1991年   50篇
  1990年   65篇
  1989年   59篇
  1988年   69篇
  1987年   48篇
  1986年   35篇
  1985年   30篇
  1984年   21篇
  1983年   18篇
  1982年   37篇
  1981年   17篇
  1980年   13篇
  1979年   14篇
  1978年   10篇
  1975年   4篇
  1974年   3篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
941.
《Chemphyschem》2004,5(2):202-208
We have designed and synthesized a series of Schiff base derivatives, and studied their structural features in two‐dimensional (2D) and three‐dimensional (3D) states by combining scanning tunneling microscopy (STM) and X‐ray diffraction experiments. The Schiff‐base derivatives with short alkyl chains crystallize easily, which allows a detailed structural analysis by X‐ray diffraction. Due to the strong adsorbate–substrate interactions, those bases with long alkyl chains easily form 2D assemblies on highly oriented pyrolytic graphite (HOPG). The STM images indicate also that the introduction of two methoxy groups into the molecule can change the structure of these 2D assemblies as a result of the increased steric hindrances, for example: the Schiff‐base derivative, bearing both methoxy groups and C16H33 tails, forms 2D Moiré patterns, and an alignment of pairing Schiff‐base molecules may be easily resolved. Conversely, the Schiff base derivative, bearing solely C16H33 tails, forms 2D non‐Moiré patterns. It is demonstrated that the 3D structural features result from the compromise of intermolecular interactions of different molecular moieties. However, there is one more factor, which also governs the 2D structure: the adsorbate‐substrate interaction. The 3D crystal structure may thus help to understand many factors involved in the formation of 2D structures, and would be helpful for designing new molecular assemblies with tailoring functions.  相似文献   
942.
The reactions of the cationic, diiron-bridging carbyne complexes [Fe(2)(mu-CAr)(CO)(4)(eta(8)-C(8)H(8))]BF(4) (1, Ar=C(6)H(5); 2, Ar=p-CH(3)C(6)H(4); 3, Ar=p-CF(3)C(6)H(4)) with LiN(C(6)H(5))(2) in THF at low temperature gave novel N-nucleophilic-addition products, namely, the neutral, diiron-bridging carbyne complexes [Fe(2)(mu-CAr)(CO)(4)(eta(7)-C(8)H(8)N(C(6)H(5))(2))] (4, Ar=C(6)H(5); 5, Ar=p-CH(3)C(6)H(4); 6, Ar=p-CF(3)C(6)H(4))). Cationic bridging carbyne complexes 1-3 react with (C(2)H(5))(2)NH, (iC(3)H(7))(2)NH, and (C(6)H(11))(2)NH under the same conditions with ring cleavage of the COT ligand to produce the novel diiron-bridging carbene inner salts [Fe(2)[mu-C(Ar)C(8)H(8)NR(2)](CO)(4)] (7, Ar=C(6)H(5), R=C(2)H(5); 8, Ar=p-CH(3)C(6)H(4), R=C(2)H(5); 9, Ar=p-CF(3)C(6)H(4), R=C(2)H(5); 10, Ar=C(6)H(5), R=iC(3)H(7); 11, Ar=p-CH(3)C(6)H(4), R=iC(3)H(7); 12, Ar=p-CF(3)C(6)H(4), R=iC(3)H(7); 13, Ar=C(6)H(5), R=C(6)H(11); 14, Ar=p-CH(3)C(6)H(4), R=C(6)H(11), 15, Ar=p-CF(3)C(6)H(4), R=C(6)H(11)). Piperidine reacts similarly with cationic carbyne complex 3 to afford the corresponding bridging carbene inner salt [Fe(2)[mu-C(Ar)C(8)H(8)N(CH(2))(5)](CO)(4)] (16). Compound 9 was transformed into a new diiron-bridging carbene inner salt 17, the trans isomer of 9, by heating in benzene. Unexpectedly, the reaction of C(6)H(5)NH(2) with 2 gave a novel COT iron-carbene complex [Fe(2)[=C(C(6)H(4)CH(3)-p)NHC(6)H(5)](mu-CO)(CO)(3)(eta(8)-C(8)H(8))] (18). However, the analogous reactions of 2-naphthylamine with 2 and of p-CF(3)C(6)H(4)NH(2) with 3 produce novel chelated iron-carbene complexes [Fe(2)[=C(C(6)H(4)CH(3)-p)NC(10)H(7)](CO)(4)(eta(2):eta(3):eta(2)-C(8)H(9))] (19) and [Fe(2)[=C(C(6)H(4)CF(3)-p)NC(6)H(4)CF(3)-p](CO)(4)(eta(2):eta(3):eta(2)-C(8)H(9))] (20), respectively. Compound 18 can also be transformed into the analogous chelated iron-carbene complex [Fe(2)[=C(C(6)H(4)CH(3)-p)NC(6)H(5)](CO)(4)(eta(2):eta(3):eta(2)-C(8)H(9))] (21). The structures of complexes 6, 9, 15, 17, 18, and 21 have been established by X-ray diffraction studies.  相似文献   
943.
The interaction of fluorocarbon containing hydrophobically modified polyelectrolyte(FMPAANa) with two kinds of nonionic surfactants(hydrogenated and fluorinated)in a semidilute (0.5wt%) aqueous solution had been studied by rheological measurements,Association behavior was found in both systems.The hydrophobic interaction of FMPAANa with fluorinated surfactant(FC171) is much stronger than that with hydrogenated surfactant(NP7.5) at low surfactoant concentrations.The interaction is strengthened by surfactants being added for the density of active junctions increased.Whereas distinct phenomena for FC171 and NP7.5 start to be found as the surfactants added over their respective certain concentration.The interaction of polyelectrolyte with fluorinated surfactant increases dramatical ly while that with hydrogenated surfactant decreases.  相似文献   
944.
Polystyrene‐b‐poly(1,2‐isoprene‐ran‐3,4‐isoprene) block copolymers with azobenzene side groups were synthesized by the esterification of azobenzene acid chloride with polystyrene‐b‐hydroxylated poly(1,2‐isoprene‐ran‐3,4‐isopenre) block copolymers for creating new photochromic materials. The resulting block copolymers with azobenzene side groups were characterized for structural, thermal, and morphological properties. IR and NMR spectroscopies confirmed that the polymers obtained had the expected structures. Differential scanning calorimetric measurements by heating runs clearly showed the glass transitions of polystyrene and polyisoprene main chains and two distinct first‐order transitions at temperatures of azobenzene side groups around 48 and 83 °C. The microstructure of these block copolymer films was investigated using both transmission electron microscopy (TEM) and near‐field optical microscopy (NOM). TEM images revealed typical microphase‐separated morphologies such as sphere, cylinder, and lamellar structures. The domain spacing of microphase‐separated cylindrical morphology in the NOM image agreed with that of the TEM results. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2406–2414, 2002  相似文献   
945.
A quantum chemical study of several complex monocyclic 4‐benzoyl‐4‐phenyl‐β‐lactam derivatives was carried out using cyclobutane, azetidine, 2‐azetidinone, 1‐methyl‐2‐azetidinone, and 3‐methyl‐2‐azetidinone as model compounds. The optimum geometry was obtained for the different conformations. The planarity of the ring was discussed in terms of the influence of the substituents on the amide resonance. To better analyze the amide resonance and the activity of the β‐lactam ring, a vibrational study was also carried out. To examine the influence of solvent polarity on the carbonyl bands, the Fourier transform–infrared (FT‐IR) spectra of the β‐lactam monocyclic derivatives were recorded in CCl4, C6H6, and CHCl3 solutions. The normal vibrations of the β‐lactam ring in the model compounds were characterized and used in the analysis of the β‐ring of more complex derivatives. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   
946.
947.
Proteins separated by two-dimensional (2-D) gel electrophoresis can be visualized using various protein staining methods. This is followed by downstream procedures, such as image analysis, gel spot cutting, protein digestion, and mass spectrometry (MS), to characterize protein expression profiles within cells, tissues, organisms, or body fluids. Characterizing specific post-translational modifications on proteins using MS of peptide fragments is difficult and labor-intensive. Recently, specific staining methods have been developed and merged into the 2-D gel platform so that not only general protein patterns but also patterns of phosphorylated and glycosylated proteins can be obtained. We used the new Pro-Q Diamond phosphoprotein dye technology for the fluorescent detection of phosphoproteins directly in 2-D gels of mouse leukocyte proteins, and Pro-Q Emerald 488 glycoprotein dye to detect glycoproteins. These two fluorescent stains are compatible with general protein stains, such as SYPRO Ruby stain. We devised a sequential procedure using Pro-Q Diamond (phosphoprotein), followed by Pro-Q Emerald 488 (glycoprotein), followed by SYPRO Ruby stain (general protein stain), and finally silver stain for total protein profile. This multiple staining of the proteins in a single gel provided parallel determination of protein expression and preliminary characterization of post-translational modifications of proteins in individual spots on 2-D gels. Although this method does not provide the same degree of certainty as traditional MS methods of characterizing post-translational modifications, it is much simpler, faster, and does not require sophisticated equipment and expertise in MS.  相似文献   
948.
The effect of pH on the formation and stability of phospholipid coatings in fused-silica capillaries in electrophoresis was investigated. A liposome solution consisting of 3 mM of 80:20 mol% phosphatidylcholine/phosphatidylserine (PC/PS) in N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid) (HEPES) buffer was used as coating material. The coating was prepared by a method described earlier and five steroids were used as neutral model analytes. First, the effect of pH of the coating solution on the formation and stability of phospholipid coatings was studied at pH 6.5-8.5. The pH of the background electrolyte (BGE) solution (HEPES) was either kept constant at pH 7.4 or made similar to the pH of the liposome coating solution. Results showed that attachment of the coating on the fused-silica wall mostly depends on the protonation of amines of the phospholipids and HEPES. The ability of the phospholipid coating to withstand changes in pH was then investigated by coating at pH 7.5 and separating steroids with acetic acid, 3-(cyclohexylamino)-1-propanesulfonic acid (CAPS), HEPES, or glycine BGE, adjusted to pH between 4.5 and 10.8. The results showed that with use of BGE solution at pH 10.8, the separation of steroids was not successful and the electroosmotic flow was high because of leakage of the phospholipid coating during preconditioning of the capillary with BGE solution. There was no phospholipid leakage with a BGE solution of pH 4.5, indicating that the protonated form of the functional groups of PS and HEPES participating in the attachment of the phospholipid coating to the capillary play an essential role in the success of the coating.  相似文献   
949.
A new tocopherol derivative, 7a‐methoxy‐α‐tocopherol ( 1 ), and a new taraxastane triterpene, taraxast‐1,20(30)‐dien‐3‐one ( 5 ), together with four known compounds, β‐tocopherol ( 2 ), α‐tocopherol ( 3 ), α‐tocospiro B ( 4 ) and taraxasterone ( 6 ) were isolated from the whole plant of Sida acuta. Their structures were elucidated by spectral analysis including MS, 1D and 2D‐NMR spectroscopy. Among those compounds, compounds 1 , 2 , and 3 showed significant antioxidant effect (EC50 = 86.9, 68.2, and 70.9 μM, respectively) in the DPPH radicals scavenging activity assay.  相似文献   
950.
Methyl radical complexes H3C…HCN and H3C…HNC have been investigated at the UMP2(full)/aug‐cc‐pVTZ level to elucidate the nature of hydrogen bonds. To better understand the intermolecular H‐bond interactions, topological analysis of electron density at bond critical points (BCP) is executed using Bader's atoms‐in‐molecules (AIM) theory. Natural bond orbital (NBO) analysis has also been performed to study the orbital interactions and change of hybridization. Theoretical calculations show that there is no essential difference between the blue‐shift H‐bond and the conventional one. In H3C…HNC complex, rehybridization is responsible for shortening of the N? H bond. The hyperconjugative interaction between the single electron of the methyl radical and N? H antibonding orbital is up to 7.0 kcal/mol, exceeding 3.0 kcal/mol, the upper limit of hyperconjugative n(Y)→σ*(X–H) interaction to form the blue‐shifted H‐bond according to Alabugin's theory. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号