首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   772篇
  免费   15篇
  国内免费   135篇
化学   554篇
晶体学   1篇
力学   38篇
数学   1篇
物理学   328篇
  2023年   29篇
  2022年   13篇
  2021年   18篇
  2020年   19篇
  2019年   21篇
  2018年   14篇
  2017年   27篇
  2016年   27篇
  2015年   30篇
  2014年   37篇
  2013年   47篇
  2012年   57篇
  2011年   84篇
  2010年   63篇
  2009年   111篇
  2008年   81篇
  2007年   83篇
  2006年   51篇
  2005年   29篇
  2004年   21篇
  2003年   21篇
  2002年   10篇
  2001年   9篇
  2000年   6篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1990年   1篇
排序方式: 共有922条查询结果,搜索用时 15 毫秒
91.
Several conflicting reports have suggested that the thermodynamic properties of materials change with respect to particle size. To investigate this, we have measured the constant pressure heat capacities of three 7 nm TiO2 rutile samples containing varying amounts of surface-adsorbed water using a combination of adiabatic and semi-adiabatic calorimetric methods. These samples have a high degree of chemical, phase, and size purity determined by rigorous characterization. Molar heat capacities were measured from T = (0.5 to 320) K, and data were fitted to a sum of theoretical functions in the low temperature (T < 15 K) range, orthogonal polynomials in the mid temperature range (10 > T/K > 75), and a combination of Debye and Einstein functions in the high temperature range (T > 35 K). These fits were used to generate Cp,m, Δ0TSm, Δ0THm, and φm values at selected temperatures between (0.5 and 300) K for all samples. Standard molar entropies at T = 298.15 K were calculated to be (62.066, 59.422, and 58.035) J · K−1 · mol−1 all with a standard uncertainty of 0.002·Δ0TSm for samples TiO2·0.361H2O, TiO2·0.296H2O, and TiO2·0.244H2O, respectively. These and other thermodynamic values were then corrected for water content to yield bare nano-TiO2 thermodynamic properties at T = 298.15 K, and we show that the resultant thermodynamic properties of anhydrous TiO2 rutile nanoparticles equal those of bulk TiO2 rutile within experimental uncertainty. Thus we show quantitatively that the difference in thermodynamic properties between bulk and nano-TiO2 must be attributed to surface adsorbed water.  相似文献   
92.
Nickel zirconium phosphate nanoparticles were found to function as efficient catalysts for the selec-tive oxidation of a wide range of alcohols to their corresponding ketones and aldehydes using H2O2 as an oxidizing agent and without any organic solvents, phase transfer catalysts, or additives. The steric and electronic properties of various substrates had significant influence on the reaction con-ditions required to achieve acetylation. The results showed that this method can be applied for the chemoselective oxidation of benzyl alcohols in the presence of aliphatic alcohols. The catalyst used in the current study was characterized by ICP-OES, XRD, NH3-TPD, Py-FTIR, N2 adsorp-tion-desorption, SEM and TEM. These analyses revealed that the interlayer distance in the catalyst increased from 0.75 to 0.98 nm when Ni2+ was intercalated between the layers, whereas the crystal-linity of the material was reduced. The nanocatalyst could also be recovered and reused at least seven times without any discernible decrease in its catalytic activity. This new method for the oxi-dation of alcohols has several key advantages, including mild and environmentally friendly reaction conditions, short reaction time, excellent yields and a facile work-up.  相似文献   
93.
The digital image correlation (DIC) technique is successfully applied across multiple length scales through the generation of a suitable speckle pattern at each size scale. For microscale measurements, a random speckle pattern of paint is created with a fine point airbrush. Nanoscale displacement resolution is achieved with a speckle pattern formed by solution deposition of fluorescent silica nanoparticles. When excited, the particles fluoresce and form a speckle pattern that can be imaged with an optical microscope. Displacements are measured on the surface and on an interior plane of transparent polymer samples with the different speckle patterns. Rigid body translation calibrations and uniaxial tension experiments establish a surface displacement resolution of 1 μm over a 5×6 mm scale field of view for the airbrushed samples and 17 nm over a 100×100 μm scale field of view for samples with the fluorescent nanoparticle speckle. To demonstrate the capabilities of the method, we characterize the internal deformation fields generated around silica microspheres embedded in an elastomer under tensile loading. The DIC technique enables measurement of complex deformation fields with nanoscale precision over relatively large areas, making it of particular relevance to materials that possess multiple length scales.  相似文献   
94.
Peptides in urine are excreted by kidney from the blood and tissues, which are composed of a large amount of hormones, cytokines, regulatory factors and the metabolized fragments of proteins. The peptide distribution in urine will reflect the physiological and pathophysiological processes in body. In past, limited information was reported about the composition of the peptides in urine. One possible reason is that the peptides in urine are fairly low abundant and there are high concentrations of salts and organic metabolites in the urine. In this report, we extracted the peptides from human urine by highly ordered mesoporous silica particles with the pore size of 2 nm, which will exclude the high molecular weight proteins over 12 kDa. The extracted peptides were then separated into fractions according to their molecular weight by size exclusion chromatography. Each of the fractions was further analyzed by MALDI-TOF MS and μRPLC–MS/MS. Totally, 193 peptides were identified by two-dimensional SEC/μRPLC–MS/MS analysis. By analyzing the progenitor protein of the peptides; we found that two-thirds of the proteins differed from the reported urine proteome database, and the high abundant proteins in urine proteome were less detected in the urine peptidome. The developed extraction and separation methods were efficient for the profiling of the endogenous peptides in human urine. The peptidome in human urine was complementary to the human urinary proteome and may provide an emerging field for biomarker discovery.  相似文献   
95.
This tutorial proposes a comprehensive and rational measurement strategy that provides specific guidance for the application of asymmetric-flow field flow fractionation (A4F) to the size-dependent separation and characterization of nanoscale particles (NPs) dispersed in aqueous media. A range of fractionation conditions are considered, and challenging applications, including industrially relevant materials (e.g., metal NPs, asymmetric NPs), are utilized in order to validate and illustrate this approach. We demonstrate that optimization is material dependent and that polystyrene NPs, widely used as a reference standard for retention calibration in A4F, in fact represent a class of materials with unique selectivity, recovery and optimal conditions for fractionation; thus use of these standards to calibrate retention for other materials must be validated a posteriori. We discuss the use and relevance of different detection modalities that can potentially yield multi-dimensional and complementary information on NP systems. We illustrate the fractionation of atomically precise nanoclusters, which are the lower limit of the nanoscale regime. Conversely, we address the upper size limit for normal mode elution in A4F. The protocol for A4F fractionation, including the methods described in the present work is proposed as a standardized strategy to realize interlaboratory comparability and to facilitate the selection and validation of material-specific measurement parameters and conditions. It is intended for both novice and advanced users of this measurement technology.  相似文献   
96.
Nanotechnology has emerged as one of the most innovative technologies and has the potential to improve food quality and safety. However, there are a few studies demonstrating that nanomaterials (NMs) are not inherently benign.This review highlights some current applications of NMs in food, food additives and food-contact materials, and reviews analytical approaches suitable to address food-safety issues related to nanotechnology.We start with a preliminary discussion on the current regulatory situation with respect to nanotechnology in relation to foods. We cover sample preparation, imaging techniques (e.g., electron microscopy, scanning electron microscopy and X-ray microscopy), separation methods (e.g., field-flow fractionation and chromatographic techniques) and detection or characterization techniques (e.g., light scattering, Raman spectroscopy and mass spectrometry). We also show the first applications of the analysis of NMs in food matrices.  相似文献   
97.
This article presents recent developments on the use of inorganic nanoparticles (NPs) for environmental remediation in polluted soil, water and gas. The number of publications on these topics has grown exponentially in recent years, especially those focused on wastewater treatment. Among these topics, removal of metals has become the most popular, although some works relate to the use of nanomaterials for the elimination of nutrients (e.g., nitrogen and some persistent organic pollutants). However, this growth has not been accompanied by knowledge about the behavior of NPs once used and released into the environment. In this article, we also comment upon the current situation with respect to NP toxicology (nanotoxicology). A remarkable number of different toxicology tests has been applied to NPs, often making it very difficult to interpret or to generalize the results. We analyze in detail the bioluminescence, Daphnia magna and other tests, and give some preliminary results obtained in our work.  相似文献   
98.
通过分子自组装方法制备4,4′-二硫联吡啶(PySSPy)单分子膜修饰的金电极. 利用所形成的对巯基吡啶自组装单分子膜(SAMs)作为偶联层进行金纳米粒子有序膜的组装. 对该纳米粒子组装体系进行Raman光谱测定, 得到了具有良好信噪比的对巯基吡啶单分子膜的表面增强拉曼散射(SERS)光谱. 在此基础上, 进一步采用电化学现场SERS光谱技术研究了该纳米粒子组装体系的SERS光谱随电位变化的规律. 在该体系稳定的电位范围内表征对巯基吡啶单分子膜的特征谱峰1011与1093 cm-1、1575与1610 cm-1以及1206与1215 cm-1这三对谱峰其强度随着所施加电位的改变呈现出明显的规律性. 分析表明, 偶联单分子层中吡啶环芳香性随着所施加电位的改变而有规律地变化是SERS光谱特征改变的内在原因.  相似文献   
99.
The ability to detect and identify the physiochemical form of contaminants in the environment is important for degradation, fate and transport, and toxicity studies. This is particularly true of nanomaterials that exist as discrete particles rather than dissolved or sorbed contaminant molecules in the environment. Nanoparticles will tend to agglomerate or dissolve, based on solution chemistry, which will drastically affect their environmental properties. The current study investigates the use of field flow fractionation (FFF) interfaced to inductively coupled plasma-mass spectrometry (ICP-MS) as a sensitive and selective method for detection and characterization of silver nanoparticles. Transmission electron microscopy (TEM) is used to verify the morphology and primary particle size and size distribution of precisely engineered silver nanoparticles. Subsequently, the hydrodynamic size measurements by FFF are compared to dynamic light scattering (DLS) to verify the accuracy of the size determination. Additionally, the sensitivity of the ICP-MS detector is demonstrated by fractionation of μg/L concentrations of mixed silver nanoparticle standards. The technique has been applied to nanoparticle suspensions prior to use in toxicity studies, and post-exposure biological tissue analysis. Silver nanoparticles extracted from tissues of the sediment-dwelling, freshwater oligochaete Lumbriculus variegatus increased in size from approximately 31-46nm, indicating a significant change in the nanoparticle characteristics during exposure.  相似文献   
100.
Colloidal silver nanoparticles were synthesized by an easy green method using thermal treatment of aqueous solutions of silver nitrate and natural rubber latex (NRL) extracted from Hevea brasiliensis. The UV–Vis spectra detected the characteristic surface plasmonic absorption band around 435 nm. Both NRL and AgNO3 contents in the reaction medium have influence in the Ag nanoparticles formation. Lower AgNO3 concentration led to decreased particle size. The silver nanoparticles presented diameters ranging from 2 nm to 100 nm and had spherical shape. The selected area electron diffraction (SAED) patterns indicated that the silver nanoparticles have face centered cubic (fcc) crystalline structure. FTIR spectra suggest that reduction of the silver ions are facilitated by their interaction with the amine groups from ammonia, which is used for conservation of the NRL, whereas the stability of the particles results from cis-isoprene binding onto the surface of nanoparticles. Therefore natural rubber latex extracted from H. brasiliensis can be employed in the preparation of stable aqueous dispersions of silver nanoparticles acting as a dispersing and/or capping agent. Moreover, this work provides a new method for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号