首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   773篇
  免费   15篇
  国内免费   135篇
化学   555篇
晶体学   1篇
力学   38篇
数学   1篇
物理学   328篇
  2024年   1篇
  2023年   29篇
  2022年   13篇
  2021年   18篇
  2020年   19篇
  2019年   21篇
  2018年   14篇
  2017年   27篇
  2016年   27篇
  2015年   30篇
  2014年   37篇
  2013年   47篇
  2012年   57篇
  2011年   84篇
  2010年   63篇
  2009年   111篇
  2008年   81篇
  2007年   83篇
  2006年   51篇
  2005年   29篇
  2004年   21篇
  2003年   21篇
  2002年   10篇
  2001年   9篇
  2000年   6篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1990年   1篇
排序方式: 共有923条查询结果,搜索用时 15 毫秒
41.
The paper shows the application of a new method – Magnetic Nanoparticles Focusing 3D, MNF-3D – for focusing of magnetic nanoparticles at any point in a three-dimensional space between the rotating magnet system. The results of focusing process of nanoparticles in water, human blood, human serum and polyurethane sponge are presented. Additionally, blood flow was also considered. The effectiveness of nanoparticle focusing was monitored optically and quantitatively by electron spin resonance method. The method enabled focusing of magnetic nanoparticles within a few minutes in different environments. A good efficiency of focusing process was observed for all the samples.  相似文献   
42.
Herbs and minerals are the integral parts of traditional systems of medicine in many countries. Herbo-Mineral medicinal preparations called Bhasma are unique to the Ayurvedic and Siddha systems of Indian Traditional Medicine. These preparations have been used since long and are claimed to be the very effective and potent dosage form. However, there is dearth of scientific analytical studies carried out on these products, and even the existing ones suffer from incomplete analysis. Jasada Bhasma is a unique preparation of zinc belonging to this class. This particular preparation has been successfully used by traditional practitioners for the treatment of diabetes and age-related eye diseases. This work presents a first comprehensive physicochemical characterization of Jasada Bhasma using modern state-of-the-art techniques such as X-ray photoelectron spectroscopy (XPS), inductively coupled plasma (ICP), elemental analysis with energy dispersive X-ray analysis (EDAX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Our analysis shows that the Jasada Bhasma particles are in oxygen deficient state and a clearly identifiable fraction of particles are in the nanometer size range. These properties like oxygen deficiency and nanosize particles in Jasada Bhasma might impart the therapeutic property of this particular type of medicine. A. C. Joshi: Private Practitioner (Vaidya).  相似文献   
43.
The conversion of silver nanoparticle (NP) paste films into highly conductive films at low sintering temperature is an important requirement for the developing areas of additive fabrication and printed electronics. Ag NPs with a diameter of ∼10 nm were prepared via an improved chemical process to produce viscous paste with a high wt%. The paste consisted of as-prepared Ag NP and an organic vehicle of ethylcellulose that was deposited on glass and Si substrates using a contact lithographic technique. The morphology and conductivity of the imprinted paste film were measured as a function of sintering temperature, sintering time and the percentage ratio of Ag NP and ethylcellulose. The morphology and conductivity were examined using scanning electron microscopy (SEM) and a two-point probe electrical conductivity measurement. The results show that the imprinted films were efficiently converted into conducting states when exposed to sintering temperature in the range of 200-240 °C, this temperature is lower than the previously reported values for Ag paste.  相似文献   
44.
Nanoparticles of Li0.1(Ni1−xZnx)0.8Fe2.1O4 (x=0-1.0) were prepared by a chemical co-precipitation method. A part of the precipitated powders was sintered at 1473 K for 2 h to obtain bulk samples via increasing the particle sizes. The particle size distribution, dc conductivity and magnetic permeability were investigated for the nano-structured samples and their bulk counterparts. The permeability as a function of temperature revealed the size effect of nano-structure in agreement with the literature. In some of the samples the permeability was almost constant over a considerable range of temperature, which may be useful in practical applications that require stability. Moreover, the nano-size structure caused a significant decrease in dc conductivity values.  相似文献   
45.
Nanosized MnFe2O4 ferrites were synthesized by a simple method, which is based on the solid state ball-milling and calcinations of nitrate precursors and citric acid. The samples were characterized by using different methods. The results indicate that the products mainly consist of MnFe2O4 nanoparticles. The effect of different annealing temperatures on particle sizes and crystallinity of the samples was also studied. By increasing the particle size, the coercivity and magnetization of the samples increase. The increase of magnetization by increasing the crystallite size could be attributed to the lower surface spin canting and surface spin disorder of the larger magnetic nanoparticles. Our analysis of ac susceptibility measurements shows that the interparticle magnetic interaction leads to the superspin glass-like behavior in these nanoparticle samples.  相似文献   
46.
余仁勇  金尚忠  梁培  岑松原  王乐 《光子学报》2014,39(12):2200-2203
针对封装胶中掺杂纳米颗粒以及采用梯度折射率的LED封装模式,用蒙特卡罗方法模拟光在胶体中的传播,分析散射系数对透光率的影响.结果表明,透光率随散射系数增大而减小.对于固定的封装层数,各层均采取最佳折射率值时,透光率可以达到最大.梯度折射率值逐渐减小的多层纳米掺杂封装结构,透光率高于传统的封装模式,能够提高LED的出光效率.  相似文献   
47.
以硝酸锂、钛酸正丁酯和糠醇为反应物,采用糠醇聚合凝胶法制备了纳米Li4Ti5O12粉体.利用XRD、SEM和BET比表面测试对产物进行了表征,并研究了纳米Li4Ti5O12粉体作为锂离子电池负极材料的电化学性能.在700℃或更高温度烧结时产物为纯相的尖晶石型.通过柠檬酸、聚乙烯吡咯烷酮、十六烷基三甲基溴化铵(CTAB)表面活性剂的加入能够减少产物颗粒的团聚程度,增大粉体的比表面积,提高其电化学性能.加入0.5 g CTAB、700℃烧结12 h的Li4Ti5O12粉体展示出最高的比容量和最佳的循环性能,10 C下充电比容量高达156.7 mAh/g.  相似文献   
48.
We present a novel route for the preparation of ferrofluidic photoresist compatible with two-photon photopolymerization (TPP). To get a homogeneous ferrofluidic photoresit, the compatibility of photoresist and magnetic materials has been improved. Monodispersed Fe3O4 nanoparticles synthesized via thermal decomposition of iron precursor were stabilized by 6-(methacryloyloxy) hexanoic acid (a kind of acrylate-based monomer). A ferrofluidic photoresist was prepared by doping the modified Fe3O4 nanoparticles in acrylate-based resin. In this way, the dispersibility of nanoparticles in photoresist was enhanced significantly. As a representative example, a precise magnetic micron-sized spring was created. In the test of the magnetic response, the sensitivity of magnetic microspring was improved remarkably due to the optimization of the ferrofluidic photoresist. When the intensity of external magnetic field reached a value of 1500 Gs, the deformation rate of the microspring would get to 2.25, indicating the compatibility of the ferrofluidic photoresist in microfabrication.  相似文献   
49.
FePt nanoparticles, in the forms of nanoparticle agglomerates and floccules-like nanoparticle networks, can be synthesized by pulsed laser deposition (PLD) at different ambient gas pressures. Backward plume deposition (BPD), as special target-substrate geometry, can achieve higher uniformity in terms of agglomerate size and size distribution, compared to conventional PLD. Both as-deposited FePt nanoparticles exhibit low Ku fcc phase and post-annealing at 600 °C is required for the phase transition to high Ku fct phase. FePt nanoparticle agglomerates deposited by BPD were found to have better fct phase crystallinity after annealing, which may be caused by the higher kinetic energy of backward moving ablated species due to shorter travel distance.  相似文献   
50.
Self-assembly is a versatile bottom-up approach for fabricating novel supramolecular materials with well-defined nano- or micro-structures associated with functionalities. The oil-water interface provides an ideal venue for molecular and colloidal self-assembly. This paper gives an overview of various self-assembled materials, including nanoparticles, polymers, proteins, and lipids, at the oil-water interface. Focus has been given to fundamental principles and strategies for engineering the self-assembly process, such as control of pH, ionic strength and use of external fields, to achieve complex soft materials with desired functionalities, such as nanoparticle surfactants, structured liquids, and proteinosomes. It has been shown that self-assembly at the oil-water interface holds great promise for developing well-structured complex materials useful for many research and industrial applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号