首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   772篇
  免费   15篇
  国内免费   135篇
化学   554篇
晶体学   1篇
力学   38篇
数学   1篇
物理学   328篇
  2023年   29篇
  2022年   13篇
  2021年   18篇
  2020年   19篇
  2019年   21篇
  2018年   14篇
  2017年   27篇
  2016年   27篇
  2015年   30篇
  2014年   37篇
  2013年   47篇
  2012年   57篇
  2011年   84篇
  2010年   63篇
  2009年   111篇
  2008年   81篇
  2007年   83篇
  2006年   51篇
  2005年   29篇
  2004年   21篇
  2003年   21篇
  2002年   10篇
  2001年   9篇
  2000年   6篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1990年   1篇
排序方式: 共有922条查询结果,搜索用时 15 毫秒
11.
Copper-mediated atom transfer radical polymerization (ATRP) of a protected silanol group-holding methacrylate, methacryloxypropyltrimethoxysilane (MOPS), was investigated. In a dry condition using carefully distilled solvent and monomer, the polymerization proceeded in a living fashion providing a low-polydispersity polymer with a predicted molecular weight. The ATRP in conjunction with the sequential monomer addition of methyl methacrylate (MMA) and MOPS afforded a block copolymer of the type PMMA-b-poly(MMA-r-MOPS). The heat treatment of a solution of the block copolymer in the presence of a catalytic amount of ammonia gave a polymeric core-shell nanoparticle with a shell of PMMA moieties and a core of the poly(MMA-r-MOPS) blocks cross-linked via the condensation of the trimethoxysilane groups of the MOPS moieties.  相似文献   
12.
Sodium poly(styrenesulfonate)(polySSNa)-grafted polymer nanoparticles were synthesized by core-cross-linking of block copolymer micelles and subsequent chemical transformation. Block copolymers, poly(p-((1-methyl)silacyclobutyl)styrene-block-poly(neopentyl p-styrenesulfonate)s, polySBS-b-polySSPen, were synthesized by nitroxy-mediated living radical polymerization. The block copolymers formed micelles (Rh=15-23 nm, where Rh represents the hydrodynamic radius) with a polySBS core and polySSPen shell in acetone. The micelle core was cross-linked by ring-opening polymerization of silacyclobutyl groups in polySBS. Hydrolysis of the neopentyl groups provided polySSNa-grafted nanoparticles. The Rh of the particles before the hydrolysis ranged from 12 to 21 nm in acetone, while they varied to the range from 50 to 110 nm in water after the hydrolysis.  相似文献   
13.
Cerium phosphate nanoparticles with diameters of 10-180 nm were synthesized by a variety of solution techniques. X-ray diffraction (XRD) determined the crystalline phase(s) present in each sample. Population, shift, and spin-lattice relaxation 31P solid-state nuclear magnetic resonance (NMR) measurements accounted for all the 31P nuclei expected in each sample, and were able to distinguish between phosphorous nuclei in different environments and phases. Transmission electron microscopy (TEM) characterized the morphology and crystallinity of the powder samples as well as of the sintered compacts of the powders. In conjunction with TEM, energy-dispersive spectroscopy (EDS) provided a measure of the composition of the bulk intergranular regions within each CePO4 sample. The presence of an amorphous, phosphate-rich intergranular phase was found in those samples prepared by dissolution of ceria in H3PO4 under various conditions.  相似文献   
14.
Ordered aggregation of thiol-passivated Au nanoparticles in a diblock copolymer polystyrene-b-poly(methyl methacrylate) has been observed. The morphology of the diblock copolymer/Au-nanocomposite was dependent on the composition of the thiol modifier. For the thiol modifier that does not preferentially interact with one of the blocks, a perpendicular (relative to the substrate) lamellar morphology is maintained. However, for a thiol with a surfactant structure similar to one of the blocks, we observed a parallel lamellar morphology and speculate that the nanoparticles have localized at the microdomain interface. These conclusions are based on transmission electron microscopy, angle-dependent X-ray photoelectron microscopy and tensiometry. These results are consistent with theoretical predictions on the hybrid systems composed of block copolymers and nanoparticles.  相似文献   
15.
Linear homopolymer chains in poor solvent exist either as individual crumpled single chain globules or asmacroscopic precipitate, depending on whether the solution is in the one- or the two-phase region. However, linearheteropolymer chains in dilute solution might be able to form stable mesoglobules made up of a limited number of chains ifthe degree of amphiphilicity of the chain is sufficiently high and the experimental conditions are appropriate. The self-assembly of block copolymers in a selective solvent is typical of such examples. In practice, the formation of stablemesoglobules can be directly related to the formation of novel polymeric nanopaticles in solution. In this article, we willaddress the formaton of mesoglobular phase not only on the basis of thermodynamics, but also from a kinetic point of view,which leads to the discussion of how viscoelasticity can affect the phase behavior of heteropolymer chains in dilute solution.The formation and stabilization of several different kinds of novel polymeric nanopedicles will be used to illustrate ourdiscussion.  相似文献   
16.
Anionic hydrogels of poly(2-acrylamido-2-methyl-1-propansulfonic acid) (p(AMPS)) were prepared with a different amount of cross-linker extent and used for in situ preparation of magnetic and metal particles. The metal particles with various sizes were obtained inside the three-dimensional polymer matrixes by absorption of the corresponding metal ions from their aqueous solutions followed by the reduction in the presence of strong reducing agent. In addition to iron particles, cobalt, nickel, copper nanoparticles, and CdS, quantum dot has been prepared by utilizing hydrogel matrix as a template for inorganic/organic composite synthesis. It was observed that the amount of cross-linkers (0.5%, 0.75%, and 1% with respect to monomer mole ratio) used in this study for bare p(AMPS) has not significantly influenced the morphology of the hydrogels or the size of the iron particles while having great effect on swelling of p(AMPS) hydrogels in water. Copolymeric hydrogels of AMPS with acrylamide in different composition were also prepared. Thermogravimetric analysis and transmission electron microscopy results showed that the AMPS content of the copolymeric hydrogel has great impact on both the metal ion loading capacity and the size of the resultant metal particles.  相似文献   
17.
Amphiphilic triblock copolymers of poly(3-hydroxybutyrate)-poly(ethylene glycol)-poly(3-hydroxybutyrate) (PHB-PEG-PHB) were directly synthesized by the ring-opening copolymerization of β-butyrolactone monomer using PEG as macroinitiator. Their structure, thermal properties and crystallization were investigated by 1H NMR, differential scanning calorimetry (DSC) and X-ray diffraction. It was found that both PHB and PEG blocks were miscible. With the increase in the PHB block length, the triblock copolymers became amorphous because amorphous PHB block remarkably depressed the crystallization of the PEG block. Biodegradable nanoparticles with core-shell structure were prepared in aqueous solution from the amphiphilic triblock copolymers, and characterized by 1H NMR, SEM and fluorescence. The hydrophobic PHB segments formed the central solid-like core, and stabilized by the hydrophilic PEG block. The nanoparticle size was close related to the initial concentrations of the nanoparticle dispersions and the compositions of the triblock copolymers. Moreover, the PHB-PEG-PHB nanoparticles also showed good drug loading properties, which suggested that they were very suitable as delivery vehicles for hydrophobic drugs.  相似文献   
18.
A new structured metallic nanomaterial of europium nanoparticle was prepared using tannic acid as the reductive agent,and nanoeuropium protein conjugates were synthesized by the method of lipoic acid modification on the surface of nanoparticle,which opens a new field of application of lanthanides in nanotechniques.Their properties were also characterized by UV-vis absorption spectroscopy,transmission electron microscopy (TEM),and fluorescence spectroscopy.The europium nanoparticle and its protein conjugates solution were stable and water-soluble.The fluorescence intensity of the composite europium nanoparticles was significantly increased in the presence of trace protein,and was linear proportional to the concentration of proteins under optimum conditions.According to this,a fluorimetric method for the determination of protein was developed in this paper.  相似文献   
19.
Microfluidic devices with three-dimensional (3-D) arrays of microelectrodes embedded in microchannels have been developed to study dielectrophoretic forces acting on synthetic micro- and nanoparticles. In particular, so-called deflector structures were used to separate particles according to their size and to enable accumulation of a fraction of interest into a small sample volume for further analysis. Particle velocity within the microchannels was measured by video microscopy and the hydrodynamic friction forces exerted on deflected particles were determined according to Stokes law. These results lead to an absolute measure of the dielectrophoretic forces and allowed for a quantitative test of the underlying theory. In summary, the influence of channel height, particle size, buffer composition, electric field, strength and frequency on the dielectrophoretic force and the effectiveness of dielectrophoretic deflection structures were determined. For this purpose, microfluidic devices have been developed comprising pairs of electrodes extending into fluid channels on both top and bottom side of the microfluidic channels. Electrodes were aligned under angles varying from 0 to 75 degrees with respect to the direction of flow. Devices with channel height varying between 5 and 50 microm were manufactured. Fabrication involved a dedicated bonding technology using a mask aligner and UV-curing adhesive. Particles with radius ranging from 250 nm to 12 microm were injected into the channels using aqueous buffer solutions.  相似文献   
20.
Nanocrystalline Mo2C powders were successfully synthesized at 500 °C by reacting molybdenum chloride (MoCl5) with C (graphite or carbon nanotube) in metallic sodium medium. X-ray powder diffractometer (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscope (XPS) and surface area analyzer (BET method) were used to characterize the samples. Experiments reveal that the carbon source used for the carbide synthesis has a great effect on the particle size and the surface area of the samples. When micro-sized graphite was used as C source the obtained nanocrystalline Mo2C powder consists of particles of 30∼100 nm, with a surface area of 2.311 m2/g. When carbon nanotubes were used as C source, the as-synthesized Mo2C sample is composed of particles of 20∼50 nm, with a surface area of 23.458 m2/g, which is an order of magnitude larger than that of the carbide prepared from the graphite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号