首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   757篇
  免费   10篇
  国内免费   165篇
化学   714篇
晶体学   4篇
力学   13篇
物理学   201篇
  2023年   11篇
  2022年   23篇
  2021年   19篇
  2020年   48篇
  2019年   15篇
  2018年   26篇
  2017年   39篇
  2016年   28篇
  2015年   26篇
  2014年   36篇
  2013年   51篇
  2012年   60篇
  2011年   79篇
  2010年   64篇
  2009年   81篇
  2008年   86篇
  2007年   62篇
  2006年   48篇
  2005年   30篇
  2004年   28篇
  2003年   24篇
  2002年   7篇
  2001年   17篇
  2000年   9篇
  1999年   1篇
  1998年   6篇
  1997年   3篇
  1996年   4篇
  1993年   1篇
排序方式: 共有932条查询结果,搜索用时 15 毫秒
41.
Metal-oxide nanocomposites were prepared over screen-printed gold electrodes to be used as room-temperature NOx (nitric-oxide (NO) and nitrogen dioxide (NO2)) sensors. Various weight ratios of SnO2–WO3 and Pt loadings were used for NO sensing. The sensing materials were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET surface analysis. The NO-sensing results indicated that SnO2–WO3 (1:2) was more effective than other materials were. The sensor response (S=resistance of N2/resistance of NO=RN2/RNO) for detecting 1000 ppm of NO at room temperature was 2.6. The response time (T90) and recovery time (TR90) was 40 s and 86 s, respectively. By further loading with 0.5% Pt, the sensor response increased to 3.3. The response and recovery times of 0.5% Pt/SnO2–WO3 (1:2) were 40 s and 206 s, respectively. The linearity of the sensor response for a NO concentration range of 10–1000 ppm was 0.9729. A mechanism involving Pt promotion of the SnO2–WO3 heterojunction was proposed for NO adsorption, surface reaction, and adsorbed NO2 desorption.  相似文献   
42.
A ZnAl2O4@SiO2 nanocomposite was prepared from metal nitrates and tetraethyl orthosilicate by the sol-gel process, and characterized by X-ray diffraction, Fourier transform infrared, transmission electron microscopy, and N2 adsorption-desorption measurements. The nanocomposite was tested as a heterogeneous catalyst for the acetylation of alcohols, phenols, and amines under solvent-free conditions. Under optimized conditions, efficient acetylation of these substrates with acetic anhydride over the ZnAl2O4@SiO2 nanocomposite was obtained. Acetylation of anilines and primary aliphatic amines proceeded rapidly at room temperature, while the reaction time was longer for the acetylation of alcohols and phenols, showing that an amine NH2 group can be selectively acetylated in the presence of alcoholic or phenolic OH groups. The catalyst can be reused without obvious loss of catalytic activity. The catalytic activity of the ZnAl2O4@SiO2 nanocomposite was higher than that of pure ZnAl2O4. The method gives high yields, and is clean, cost effective, compatible with substrates having other functional groups and it is suitable for practical organic synthesis.  相似文献   
43.
A ZnAl2O4@SiO2 nanocomposite was prepared from metal nitrates and tetraethyl orthosilicate by the sol-gel process,and characterized by X-ray diffraction,Fourier transform infrared,transmission electron microscopy,and N2 adsorption-desorption measurements.The nanocomposite was tested as a heterogeneous catalyst for the acetylation of alcohols,phenols,and amines under solvent-free conditions.Under optimized conditions,efficient acetylation of these substrates with acetic anhydride over the ZnAl2O4@SiO2 nanocomposite was obtained.Acetylation of anilines and primary aliphatic amines proceeded rapidly at room temperature,while the reaction time was longer for the acetylation of alcohols and phenols,showing that an amine NH2 group can be selectively acetylated in the presence of alcoholic or phenolic OH groups.The catalyst can be reused without obvious loss of catalytic activity.The catalytic activity of the ZnAl2O4@SiO2 nanocomposite was higher than that of pure ZnAl2O4.The method gives high yields,and is clean,cost effective,compatible with substrates having other functional groups and it is suitable for practical organic synthesis.  相似文献   
44.
In this study, thermal and mechanical properties of novel nanocomposite, epoxy resin reinforced with octadecylamine functionalized graphene oxide (GO-ODA) and Sasobit, prepared via creative vacuum shock technique, were investigated. By introducing 1, 3 and 5 wt% Sasobit to the neat epoxy resin, the tensile strength increased remarkably by 104%, 315% and 266%, respectively due to the unique stiff and crystalline structure of Sasobit. In addition, considerable enhancement of 125% in Young's modulus, 351% in toughness, 562% in impact resistance, ~19 °C in thermal stability and ~7 °C in glass transition temperature of epoxy resin with 3 wt% Sasobit loading was demonstrated. The composite containing 3 wt% Sasobit alone, were found to have even superior properties than GO-ODA/epoxy nanocomposite, as surprisingly 3, 2.9, 2.2 and 2 times more improvement, respectively in tensile strength, toughness, impact strength and thermal stability of epoxy resin compared to reinforcement with GO-ODA were obtained.  相似文献   
45.
The modification of nanocomposite coatings with fillers having unique characteristics in the polymeric matrix is a promising strategy to enhance the durability as well as to prevent the growth of microorganisms that decrease the stability of the materials. This study was conducted to evaluate the rheological and antimicrobial behavior of epoxy-based nanocomposite coatings filled with nanosilica, titanium oxide (TiO2) and zinc oxide (ZnO) against Staphylococcus aureus and Escherichia coli. A rheometer was used for characterizing the rheological properties of the various fillers embedded epoxy nanocomposite coatings. All of the composites inhibited the growth of Staphylococcus aureus and Escherichia coli on modified Kirby Bauer antimicrobial testing, only when they are in contact with samples. Upon quantitative analysis, bioactive constituent dependent antimicrobial activity was observed which increased with the exposure of contact times. The epoxy/silica/TiO2/ZnO (ESTZ) coating showed the highest bacterial reduction of more than 95% for 4 h of treatment. The bioactivity was decreased for the case of epoxy/silica/ZnO (ESZ) or epoxy/silica/TiO2 (EST). The combined effect of the nanosilica, TiO2, and ZnO shows the highest performance in terms of stress, viscosity and torque compared to the individual effect of these three fillers onto the epoxy. Results showed that the shear stress of ESZ, EST, epoxy/silica (ES), and ESTZ coating was increased by 4.4%, 7.7%, 32.2%, and 42%, respectively, compared to the neat epoxy (NE) coating. The torque versus strain curve also showed that the torque of ESTZ composites was the highest (0.52 mN m) compare to NE (0.36 mN m), ESZ (0.38 mN m), EST (0.40 mN m), and ES (0.45 mN m). The studies indicate that the epoxy-based thermoset nanocomposite coatings can be utilized as bactericidal surfaces for the industrial and medical purpose to reduce microbial growth.  相似文献   
46.
Electrospinning has been extensively accepted as one of most important techniques for fabrication of scaffolds for bone tissue engineering. Polycaprolactone is one of the most applied electro-spinned scaffolds. Since low mechanical strength of polycaprolactone scaffold leads to the limitation of its applications, composition of polycaprolactone with ceramic particles is of great interest. Several studies have been conducted on fabrication and characterization of polycaprolactone nanocomposite scaffolds, but none of these researches has used mesoporous silica particles (KIT-6). In this project, a high-strength and bioactive nanocomposite scaffold has been developed which consists of polycaprolactone and mesoporous silica particles. Results showed that increase of KIT-6 particles percentages up to 5% leads to the enhancement of tensile strength of scaffold from 1.8 ± 0.2 to 2.9 ± 1.0 MPa. Although wettability of scaffolds in presence of particles was totally lower than pure PCL scaffold, but increase of particles percentages led to enhancement of wettability and water absorption of scaffolds. On the other hand presence of KIT-6 particles increased specific surface area and also bioactivity of scaffold was increased by enhancement of ion exchange between surface and simulated body fluid. Finally it was concluded that PCL-KIT-6 scaffolds are a suitable candidate for application in tissue engineering.  相似文献   
47.
综述了可拉伸超韧水凝胶的设计原理及其在组织工程和柔性电子器件领域的应用. 通过将网络结构层次、 化学结构、 增韧机制与宏观力学性能相结合, 重点讨论了单网络水凝胶、 双网络水凝胶、 纳米复合水凝胶及其它水凝胶等可拉伸超韧水凝胶的研究进展, 并总结和展望了新思路和新方向.  相似文献   
48.
采用水热法合成了一种微球状的CuS/Ag2S纳米复合物. 通过透射电子显微镜、 紫外-可见吸收光谱和拉曼光谱等对其形貌及光学性质进行了表征; 考察了其类过氧化物酶性质, 并通过表面增强拉曼散射原位监测了类过氧化物酶催化反应. 以3,3',5,5'-四甲基联苯胺(TMB)为底物进行显色反应, 结果表明, 在H2O2存在下CuS/Ag2S 纳米复合物具有类过氧化物酶的性质, 可以将无色的TMB氧化成蓝色的oxTMB. 基于此实现了对微量H2O2的检测.  相似文献   
49.
This paper investigates the rheological properties of methylcellulose-silica-ionic liquid nanocomposite (2-MCPS-MC) on the rheological properties (apparent viscosity (AV), plastic viscosity (PV), yield point (YP), 10-s gel strength, 10-min gel strength, and thixotropy according to API requirements) of water-based mud, and comparing these properties with the properties of the silica-free methylcellulose (MC) as drilling fluid additive. The physicochemical properties of the MC and 2-MCPS-MC compounds were studied using 1H NMR, FTIR, Raman-spectroscopy, XRD, FE-SEM, AFM, and TGA. By FE-SEM and AFM, it is proven that the silica had an excellent dispersion in a spherical shape on the MC polymer. Three samples were prepared: the first is the commercial water-based mud, while the second and the third samples are MC and 2-MCPS-MC, respectively. The samples of MC were prepared in four concentrations (2%, 1.5%, 1.0% and 0.5% by weight). Throughout the test, density remained at 7.6 (lbs/gal) for mud fluid and 8.5 (lbs/gal) for MC and 2-MCPS-MC at pH 9.0. The results confirmed that the optimum concentration of MC and 2-MCPS-MC, which meet the required API code, was between 1 and 1.5%. The addition of 2-MCPS-MC to water-based mud enhances filtration properties. Response surface technique (RSM) with central composite design (CCD) was also used to optimize the drilling fluid properties to achieve the optimal response to AV, PV, YP, Gl, and Thixotropic using a Design expert software. The results obtained by RSM showed consistency between the experimental and theoretical data.  相似文献   
50.
《Physics letters. A》2020,384(31):126790
The molecular dynamics method is used to study the formation of the Al/graphene nanocomposite in the structural grains of different size under the action of internal stresses. The behavior of graphene sheets inside an individual structural grain as well as in the process of two Al grains containing graphene are joined is investigated. The motion of graphene films, starting from the middle of the aluminum matrix, ends with their location at the crystallite boundaries. Graphene moves in the Al matrix along closely packed planes. In this case, graphene sheets acquire curvature. An intergrowth of graphene sheets is also observed. A contact between two Al-C nanocrystallites through a graphene interlayer is created. The self-diffusion coefficients of atoms and the partial potential energies increased with decreasing nanocrystallite size. The angular distribution of the nearest geometric neighbors and the distribution of distances to the nearest neighbors are determined using the construction of Voronoi polyhedra.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号