首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   17篇
  国内免费   173篇
化学   353篇
晶体学   4篇
力学   3篇
综合类   2篇
物理学   40篇
  2024年   1篇
  2023年   22篇
  2022年   21篇
  2021年   20篇
  2020年   16篇
  2019年   10篇
  2018年   9篇
  2017年   9篇
  2016年   14篇
  2015年   12篇
  2014年   30篇
  2013年   16篇
  2012年   20篇
  2011年   21篇
  2010年   17篇
  2009年   23篇
  2008年   14篇
  2007年   16篇
  2006年   16篇
  2005年   13篇
  2004年   16篇
  2003年   9篇
  2002年   9篇
  2001年   10篇
  2000年   8篇
  1999年   6篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1991年   5篇
  1990年   2篇
  1987年   1篇
排序方式: 共有402条查询结果,搜索用时 15 毫秒
61.
对实验室自配的1 mol/L NaOH标准滴定溶液的浓度进行不确定度评定,建立不确定度评定程序和方法,并依据GB/T601-2002建立数学模型.确定了影响NaOH标准滴定溶液浓度的主要因素,归纳了不确定度的主要来源,建立了用基准试剂标定标准滴定溶液浓度的不确定度评定程序和方法.当NaOH标准滴定溶液浓度为1.0201 mol/L时,扩展不确定度为0.0040 mol/L.该程序和方法适用于同类型实验的不确定度评定.  相似文献   
62.
报导可显著提高锂离子电池安全性的新型电解液添加剂全氟辛酸铵(APC). UL 94 可燃性试验显示添加0.70 wt% APC能使有机电解液的火焰传播速率下降33%. 差示扫描量热法(DSC)测试表明APC显著减弱了嵌锂碳电极和电解液之间的放热反应, 并将其热不稳定温度由138.0 ℃提高到167.5 ℃. 交流阻抗检测显示APC的加入明显降低了碳材料电极的界面阻抗, 并且提高了在储存过程中其固态电解质界面(SEI)层的稳定性. 添加APC还能有效地提高Li/MCMB电池充放电循环性能和库仑效率.  相似文献   
63.
Li4 Ti5 O12纳米片的合成及储锂性能研究   总被引:2,自引:0,他引:2  
以无定形的水合二氧化钛为前驱物,水热法合成了200~400nm大小的Li4Ti5O12纳米片作为锂离子电池负极材料.XRD(X射线衍射)、SEM(扫描电子显微镜)和TEM(透射电镜)分析表征样品的物相结构、表观形貌;循环伏安、充放电循环和电化学交流阻抗技术分别测定该纳米Li4Ti5O12在有机电解液和室温离子液体S114TFSI电解液中的电化学性能.结果表明,该材料具有较高的放电容量和良好的循环性能,有望成为锂二次电池新型负极材料.  相似文献   
64.
LiCoO2和LiMn2O4在水系电解液中的赝电容研究   总被引:1,自引:0,他引:1  
用溶胶-凝胶法合成了LiCoO2和LiMn2O4样品粉末。以LiCoO2和LiMn2O4电极为正极,活性炭(AC)电极为负极,分别组装成模拟非对称超级电容器AC/LiCoO2和AC/LiMn2O4,通过循环伏安、恒流充放电和电化学阻抗研究其电容性能。测试结果表明,这类非对称电容器在Li2SO4溶液中展示了较好的电容性能。在电压范围(0~1.4)V、电流密度为100mA·g-1时,AC/LiCoO2和AC/LiMn2O4电容器的初始比电容分别为45.9和44.6F·g-1。但在大电流密度下,AC/LiMn2O4具有更大的比电容和更好的循环性能。实验结果还表明,在水系电解液中,LiCoO2和LiMn2O4均是通过Li+脱嵌导致过渡元素(Co,Mn)价态变化所产生的赝电容来实现储能。  相似文献   
65.
基体对流动锌酸钾碱液中锌电沉积的影响   总被引:1,自引:0,他引:1  
在流动的高浓度锌酸钾碱液中研究了镍箔和镀镍冲孔钢带基体电极对锌沉积/溶解电化学行为的影响. 结果表明, 在流动电解液中电极表面浓度梯度变化不大, 不同基体上均未出现锌沉积的阴极峰; 扫描速度超过10 mV/s, 循环伏安曲线基本不随扫速变化, 说明锌的沉积/溶解峰电流不仅与扫描速度有关, 还取决于锌沉积的时间. 采用镀镍冲孔钢带基体兼有析氢过电位大和稳定性好的特点, 又由于其特殊的冲孔结构, 改变了传质方式, 锌沉积的极化降低, 孔的周围形成紧密堆积的沉积锌, 锌沉积的电流和电量大, 沉积效率高, 经 4次充放电循环后, 库仑效率即达95%以上, 是性能较佳的基体电极.  相似文献   
66.
二(三氟甲基磺酸酰)亚胺锂(LiTFSI)与1,3-氮氧杂环戊-2-酮(OZO)形成的离子液体具有良好的物理和电化学性能,表现出宽的液相温度范围和高的离子电导率,可满足超级电容器的应用需求。本文制备的LiTFSI-OZO离子液体体系中,各种离子的结构组成(如自由离子、离子对、积聚离子)及其之间的相互作用对离子液体的电化学性能具有较大的影响,将其作为电解液应用于不同微结构特性(孔径、比表面积等)的炭材料(碳纳米管(CNTs)、中孔活性炭(MEACs)和微孔活性炭(MIACs))作为电极的电化学双层电容器中,电化学兼容性研究表明,由于中孔活性炭电极材料有最大的比表面积及最适宜的孔径分布,相应的模拟电容具有最高的比容量184.6 F?g-1。该研究表明,对电极材料的微结构特性与离子液体离子尺度进行优化匹配是实现离子液体作为电解液应用于超级电容器的关键。  相似文献   
67.
车海英  杨军  吴凯  王久林  努丽燕娜 《化学学报》2011,69(11):1287-1292
系统研究了电解质锂盐对磷酸铁锂电极高温性能的影响, 并探讨了相关的作用机理. 差示扫描量热仪测试显示, 与LiPF6相比, 二(三氟甲基磺酰)亚胺锂(LiTFSI)和LiBF4具有对水份稳定且热稳定性好的优点, 更适合高温条件下使用. 应用等离子体发射光谱考察LiFePO4在55 ℃和不同电解液体系中铁离子溶出程度, 结果表明, 在LiTFSI和无氟锂盐电解液中LiFePO4的铁很少溶出, 而在LiPF6电解液中却溶出严重, 且FePO4的铁溶出量高于LiFePO4. 循环伏安和光学显微镜测试结果显示少量LiBF4的加入能有效抑制LiTFSI对集流体铝箔的腐蚀. 以LiTFSI和LiBF4作为混合锂盐配成的电解液能显著改善LiFePO4/Li电池的高温电化学性能, 在55 ℃和1 C倍率下循环40次后放电比容量达147.7 mAh/g.  相似文献   
68.
研究了钒电池在使用阳离子交换膜稳定运行过程中电解液体积的变化情况, 分析了影响因素, 并总结了变化规律. 离子的电迁移使电解液体积随充放电容量的变化线性改变, 充电过程正极电解液体积线性减小, 负极电解液体积线性增大; 放电过程反之. 多次充放电循环过程中, 钒离子的净渗透方向是由负极到正极, 水的净变化方向与钒离子相同, 最终使得多次循环过程正极电解液的体积逐渐增加.  相似文献   
69.
孔泳  许娟  秦亚莉  姚超 《化学学报》2011,69(23):2767-2772
以膨胀石墨作为基底电极, 采用恒电位法合成了聚苯胺(PAn), 并探讨了在膨胀石墨基底电极上电聚合生成PAn的电化学条件. 结果表明: 聚合电位为0.8 V, 苯胺和硫酸的浓度分别为0.2和0.3 mol/L的条件下电聚合得到的PAn具有最佳的电化学活性. 分别以PAn/膨胀石墨和金属Mg为工作电极, 铂片为辅助电极, 饱和甘汞电极为参比电极组成三电极体系, 测定PAn/膨胀石墨和Mg在0.1 mol/L的NaNO2, MgCl2, Mg(NO3)2及磷酸盐缓冲液(PBS)等不同电解质溶液中的极化曲线, 实验结果表明电解液的种类对PAn的稳定性影响不大, 而Mg在0.1 mol/L NaNO2溶液中的稳定性最高. 以PAn/膨胀石墨作为阴极, 金属Mg为阳极, 0.1 mol/L NaNO2为电解液组装成Mg│NaNO2│PAn电池, 并考察了基于该聚合物电极的电池在电流密度为30 mA•g-1时的恒电流放电行为. 相比于其它电解液, 该电池在0.1 mol/L NaNO2电解液中具有较高的开路电位(1.84 V)和放电比容量(0.19 Ah•g-1).  相似文献   
70.
使用了一种新型的有机电解液(三乙基甲基四氟硼酸铵/(丙烯碳酸酯+乙腈): MeEt3NBF4/(AN+PC))和两种传统有机电解液(四乙基四氟硼酸铵/丙烯碳酸酯(Et4NBF4/AN)和四乙基四氟硼酸/乙腈(Et4NBF4/PC)), 制作成活性炭(AC)基软包装超级电容器. 在不同电压窗口下对新型有机电解液的循环伏安和电化学阻抗谱进行了表征, 并在0-3 V的电压窗口下, 通过循环伏安、电化学阻抗谱、恒流充放电、漏电流、自放电、循环寿命和库仑效率, 对以上三种电解液进行了综合的比较. 结果表明, 新型有机电解液综合了AN和PC各自的优点, 性能优异.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号