首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   13篇
  国内免费   10篇
化学   124篇
力学   1篇
综合类   1篇
物理学   24篇
  2023年   13篇
  2022年   12篇
  2021年   15篇
  2020年   19篇
  2019年   11篇
  2018年   15篇
  2017年   8篇
  2016年   6篇
  2015年   3篇
  2014年   4篇
  2013年   15篇
  2012年   11篇
  2011年   6篇
  2010年   5篇
  2008年   2篇
  2007年   4篇
  2004年   1篇
排序方式: 共有150条查询结果,搜索用时 31 毫秒
51.
β‐CD modified reduced graphene oxide (RGO) sheets have been prepared and characterized by TEM, AFM, IR, EIS and CVs. In comparison with bare glass carbon electrode (GCE) and RGO modified GCE, CD‐RGO/GCE showed much higher peak currents to the reduction of nitrophenol isomers (NPs), attributed to the larger specific surface area of RGO and high quantities of host–guest recognition sites. Three pairs of redox peaks are observed on the CVs of CD‐RGO for p‐NP (0.3 V), o‐NP (?0.2 V) and m‐NP (0.05 V), separating well with each other. Under the optimized condition, the anodic peak currents were linear over ranges around 1–10 mg dm?3 for p‐NP, 1–9 mg dm?3 for o‐NP and 1–6 mg dm?3 for m‐NP, with the detection limits of 0.05 mg dm?3, 0.02 mg dm?3 and 0.1 mg dm?3, respectively. Thus, the CD‐RGO is expected to be a promising sensor material for detecting trace NPs in waste water.  相似文献   
52.
《Analytical letters》2012,45(13):2029-2039
A novel platform for detection of histone deacetylase (HDAC) activity has been developed using a gold nanoparticle based fluorescence resonance energy transfer (FRET) immunoassay. This strategy combined the acetylated fluorescent peptide probe with the anti-acetyl antibody functionalized Au NPs to measure the deacetylation activity of histone deacetylase sirtuin2. Enzymatic deacetylation of the acetylated peptide substrate was detected by a gold nanoparticle labeled anti-acetyl peptide antibody with the formation of the immunocomplex resulting in energy transfer between the fluorescent dyes and the nanoparticles. Due to the highly efficient fluorescence quenching of the gold nanoparticles, the proposed method shows a low background and favorable sensitivity. In addition, this approach can be applied to the evaluation of HDAC inhibitor activity. The proposed platform should facilitate the development of new assays for HDAC activity and other histone modifications.  相似文献   
53.
Shell‐isolated nanoparticles (NPs)‐enhanced Raman spectroscopy (SHINERS) can be potentially applied to virtually any substrate type and morphology. How to take a step forward to prepare SHINERS NPs (SHINs) with superior performance is critical for the practical applications of surface‐enhanced Raman scattering (SERS) in the breadth and depth. Here, we present a method to obtain 120 nm diameter gold NPs coated with ultrathin silica shells (1–4 nm). The silica shell can be controlled growth through carefully tuning a series of parameters, such as amount of 3‐aminopropyl triethoxysilane used, pH, reaction time, and reaction temperature. We compare the enhancement factor of the obtained 120 nm Au with a 4 nm silica shell NPs to the 55 nm Au with a 4 nm silica shell NPs, and the activity of a 120 nm SHINs is nearly 24 times that the 55 nm SHIN from a single particle view. We also compare the enhancement factor of 1 nm silica shell Au@SiO2 NPs with the bare Au NPs. The enhancement factor of 1 nm silica shell Au@SiO2 NPs was found to be about twice that of the bare particles. For a deeper understanding of the source of the giant enhanced electrical field of the 1 nm silica shell Au@SiO2 NPs, we study the plasmonic property of single 1 nm silica shell Au@SiO2 NP on a gold film substrate through correlation of the structure of single NP using SEM with its SPR spectroscopy. We find that the multipolar interaction between the single Au@SiO2 NP and gold film substrate is important for the SERS. Our studies on the performance of 120 nm SHINs and the plasmonic property of these particles can significantly expand the applications of SHINERS technique and improve the understanding of physical nature of SHINs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
54.
胡争艳  孙珍  张轶  吴仁安  邹汉法 《化学学报》2012,70(19):2059-2065
纳米二氧化硅(纳米SiO2)是一种正在规模化生产的纳米材料, 无定型纳米SiO2因其吸入和口服对生命体不会造成直接的危害被认为是生物安全的纳米材料, 已被广泛用于疾病诊断、生物分析和成像、药物载体等的研究中, 导致其进入人体的方式日益增多, 因此它对人体健康影响的研究对于其作为生物材料真正实现广泛应用尤为重要. 本文采用肼化学方法为基础的定量蛋白质组学对无定型纳米SiO2进入人肺癌细胞后产生的影响进行了分析, 结果表明其进入细胞后, 导致细胞内的平衡状态发生变化, 从而影响了细胞内许多重要的蛋白质的表达水平. 部分跨膜蛋白质表达的变化对纳米SiO2进入细胞的途径的阐明有一定的指导意义.  相似文献   
55.
Nanomaterials have supported important technological advances due to their unique properties and their applicability in various fields, such as biomedicine, catalysis, environment, energy, and electronics. This has triggered a tremendous increase in their demand. In turn, materials scientists have sought facile methods to produce nanomaterials of desired features, i.e., morphology, composition, colloidal stability, and surface chemistry, as these determine the targeted application. The advent of photoprocesses has enabled the easy, fast, scalable, and cost- and energy-effective production of metallic nanoparticles of controlled properties without the use of harmful reagents or sophisticated equipment. Herein, we overview the synthesis of gold and silver nanoparticles via photochemical routes. We extensively discuss the effect of varying the experimental parameters, such as the pH, exposure time, and source of irradiation, the use or not of reductants and surfactants, reagents’ nature and concentration, on the outcomes of these noble nanoparticles, namely, their size, shape, and colloidal stability. The hypothetical mechanisms that govern these green processes are discussed whenever available. Finally, we mention their applications and insights for future developments.  相似文献   
56.
杨晶亮  李若平  韩俊鹤  黄明举 《中国物理 B》2016,25(8):83301-083301
We use Au@SiO_2 nanoparticles(NPs) to systematically and comprehensively study the relationship between nanostructure and activity for surface-enhanced Raman scattering. Calculation simulation using the finite different time domain method verifies the experiment results and further reveals that the particle size and the distance between the NPs play vital roles in the surface-enhanced Raman scattering(SERS). Furthermore, in order to better simulate the real experiment, a Au@SiO_2 nanosphere dimer is placed on the silicon substrate and Au substrate, separately. The simulation results show that the large EM field coupling is due to the "hot spots" transferred from the NP–NP gaps to NP–surface of metal gaps,meanwhile, more "hot spots" occur. We also find that the signal intensity strongly depends on the position of the probe molecule. This work provides a better understanding of EM field enhancement.  相似文献   
57.
本文报道了用二氧化钛纳米颗粒(TiO2NPs)/还原氧化石墨烯(RGO)的复合物修饰玻碳电极检测微量对硝基苯酚(4-NP)的电化学方法. 本研究用扫描电子显微镜(SEM)对该复合材料形貌进行表征,用循环伏安法和交流阻抗谱对该复合物电极的电化学性能进行检测,表现出良好的电化学特性,采用差分脉冲伏安法对4-NP进行微量检测,结果令人满意,这主要得益于TiO2NPs/RGO复合物对4-NP有较高的催化活性,其电流峰值与浓度呈较高的线性关系,DPV的检测范围为10μmol·L-1 ~ 350μmol·L-1,检测限为0.13 μmol·L-1. 与其他报道的一些电化学传感器相比,该传感器检测范围大,检测限低,且工作稳定,成本低,分析简单快速,具有很好的应用前景.  相似文献   
58.
The electroluminescence intensity of the phenanthrene‐functionalized gold nanoparticles, PMPT‐Au nanoparticles/CPB: Ir(PIA)2 (acac) film, was increased by 4.9 times compared with control device, CPB: Ir(PIA)2 (acac) due to coupling between the excitons of emissive layer and localized surface plasmonic resonance of PMPT‐Au NPs. The maximum luminous efficiencies of devices II to IV with PMPT‐Au NPs were 39.2 cd A?1 (11.8 V), 40.1 cd A?1 (10.5 V), and 43.1 cd A?1 (9.0 V), respectively. The increment of current efficiency with PMPT‐Au NP coated devices was strongly related to the energy transfer between the radiated light generated from CBP: Ir(PIA)2 (acac) emissive layer and localized surface plasmonic resonance excited by PMPT‐Au NP layer.  相似文献   
59.
This contribution reports the biosynthesis of CuO NPs via ultrasound method using the Cystoseira trinodis extracts as an eco friendly and time saving process. The characterization of cupric oxide NPs was performed using XRD, FE-SEM, EDX, TEM, AFM, photoluminescence, UV–Vis, Raman and FT-IR spectroscopy investigations. SEM images show the spherical structure with the average crystallite size 6 nm to 7.8 nm of CuO. XRD analysis approved the formation of pure monoclinic crystallite structures of CuO NPs. These observations were confirmed by TEM analysis. The photocatalytic studies reveal the activity of the prepared CuO NPs as an efficient catalyst for the degradation of methylene blue (MB) in the presence of UV and Sunlight. CuO NPs under varying experimental parameters such as dye concentration, catalytic load, pH. The results of the in vitro biological screening effect of CuO NPs (zone of growth inhibition and minimal inhibitory concentrations) in comparison with cephalexin (as a standard compound) using the disc diffusion method was demonstrated the significant bactericidal activity against some bacteria strain including Escherichia coli (E. coli), Enterococcus faecalis (E. faecalis), Salmonella typhimurium (S. typhimurium), Staphylococcus aureus (S. aureus), Bacillus subtilis (B. subtilis), and Streptococcus faecalis (S. faecalis). Furthermore, the Nps found to inhibit the activity of 1,1-Diphenyl-2-picrylhydrazyl (DPPH) free radicals effectively. This study introduces a facile, green and low coast method for the synthesis of monoclinic CuO NPs with catalytic, antioxidant and antibacterial properties.  相似文献   
60.
Cancer remains a leading cause of death worldwide, despite extraordinary progress. So, new cancer treatment modalities are needed. Tumor-treating fields (TTFs) use low-intensity, intermediate-frequency alternating electric fields with reported cancer anti-mitotic properties. Moreover, nanomedicine is a promising therapy option for cancer. Numerous cancer types have been treated with nanoparticles, but zinc oxide nanoparticles (ZnO NPs) exhibit biocompatibility. Here, we investigate the activity of TTFs, a sub-lethal dose of ZnO NPs, and their combination on hepatocellular carcinoma (HepG2), the colorectal cancer cell line (HT-29), and breast cancer cell lines (MCF-7). The lethal effect of different ZnO NPs concentrations was assessed by sulforhodamine B sodium salt assay (SRB). The cell death percent was determined by flow cytometer, the genotoxicity was evaluated by comet assay, and the total antioxidant capacity was chemically measured. Our results show that TTFs alone cause cell death of 14, 8, and 17% of HepG2, HT-29, and MCF-7, respectively; 10 µg/mL ZnO NPs was the sub-lethal dose according to SRB results. The combination between TTFs and sub-lethal ZnO NPs increased the cell death to 29, 20, and 33% for HepG2, HT-29, and MCF-7, respectively, without reactive oxygen species increase. Increasing NPs potency using TTFs can be a novel technique in many biomedical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号