首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   13篇
  国内免费   10篇
化学   124篇
力学   1篇
综合类   1篇
物理学   24篇
  2023年   13篇
  2022年   12篇
  2021年   15篇
  2020年   19篇
  2019年   11篇
  2018年   15篇
  2017年   8篇
  2016年   6篇
  2015年   3篇
  2014年   4篇
  2013年   15篇
  2012年   11篇
  2011年   6篇
  2010年   5篇
  2008年   2篇
  2007年   4篇
  2004年   1篇
排序方式: 共有150条查询结果,搜索用时 218 毫秒
41.
42.
ABSTRACT

We reported a green and simple method for biosynthesizing zinc oxide nanoparticles (ZnO NPs) using Corymbia citriodora leaf extract as reducing and stabilizing agent. SEM, EDX, XRD, UV–VIS spectroscopy, Raman spectroscopy and TGA have been used for characterizing the biosynthesized ZnO NPs. The results indicating the ZnO NPs synthesized by C. citriodora leaf extract have high purity and the average size is 64?nm. The photocatalytic activity of the ZnO NPs has been investigated by degradation methylene blue under visible light irradiation. Due to the smaller size, the biosynthesized ZnO NPs showed an excellent photocatalytic performance.  相似文献   
43.
Reusable acidic nickel oxide nanoparticles have been synthesized,characterized and applied as a catalyst to convert 2-aminoaryl ketones and β-ketoesters/ketones into the corresponding quinolines in good yields with high selectivity.This could serve as a simple and convenient procedure for the Friedlander annulations.  相似文献   
44.
《印度化学会志》2023,100(5):100987
The synthesis of several metal oxide nanoparticles mediated by microbes and plants and their different bio-applications gain more attention from the research community in the biomedical science field. As concerned with plants, which comprise plenty of biofunctional compounds like alkaloids, steroids, tannins, nutritionals, and flavonoids. As reported plant-mediated biogenic fabrication of the metal oxide nanoparticles at an eco-friendly, less hazardous, and low cost is a convincing way, further, it is treated for biological screening in terms of applications like antifungal, cytotoxicity, antibacterial, and anti-plasmodia activity. These dose-dependent activities and the morphology (shape, size) also impact the efficiency of the bio-inspired NPs. The eco-friendly way of using plant material highlights their non-hazardous nature, cost-ineffective, and facile which is an alternative to synthesizing chemically. Plants rich in metabolites or chemicals may act as reducing and capping agents during the synthesis of NPs. The present review reveals a plant-mediated synthesis of metal and metal oxide NPs, their morphological analysis like shape and size, crystalline nature using several techniques, and their biological applications.  相似文献   
45.
Due to the improved thermophysical characteristics of ionic liquids (ILs), such as their strong ionic conductivity, negligible vapor pressure, and thermal stability at high temperatures, they are being looked at viable contender for future heat transfer fluids. Additionally, the dispersing nanoparticles can further improve the thermophysical characteristics and thermal performance of ionic liquids, which is one of the emerging research interests to increase the heat transfer rates of the thermal devices. The latest investigations about the utilization of ionic liquid nanofluids as a heat transfer fluid is summarized in this work. These summaries are broken down into three types: (a) the thermophysical parameters including thermal conductivity, viscosity, density, and specific heat of ionic liquids (base fluids), (b) the thermophysical properties like thermal conductivity, viscosity, density, and viscosity of ionic liquids based nanofluids (IL nanofluids), and (iii) utilization of IL nanofluids as a heat transfer fluid in the thermal devices. The techniques for measuring the thermophysical characteristics and the synthesis of IL nanofluids are also covered. The suggestions for potential future research directions for IL nanofluids are summarized.  相似文献   
46.
Monitoring food quality and safety need the development of highly sensitive and accurate techniques. Organochlorine pesticides (OCPs) are a widely used category of pesticides. The high toxicity and high stability of OCPs pesticides made their detection the target of several research studies. Chloridazon, one of the wide used OCPs pesticides, and its major degradation product (chloridazon-desphenyl) have shown high harmful effects. Here, a specific OCPs electrochemical sensor was developed. Fe3O4 nanostructures decorated indium tin oxide (ITO) electrode showed high specificity towards the OCPs because of the capability of chlorine atoms, to interact with the iron oxide NPs. The chemical composition and the morphology of the modified nanosensor were investigated using Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), vibrating sample magnetometer (VSM), energy dispersive x-ray (EDX), and Raman spectroscopy techniques. The results showed the formation of two morphologies, including spongy agglomerated NPs with100 nm in diameter and nanofibers with 20 nm in thickness. The modified electrode exhibited a high sensitivity with a detection limit of 0.9 μmol L−1. Also, chloridazon was detected in the presence of various interferences, including isoproturon pesticide and urea. Furthermore, chloridazon pesticide was also detected in a surface water sample.  相似文献   
47.
魏晋欣  陈雅文  张鸿洋  庄赞勇  于岩 《催化学报》2021,42(1):78-86,后插2-后插7
金属有机框架(MOFs)材料因其高孔隙率特性在气体吸附分离、药物传递、催化等领域具有广泛应用.近年来,将功能化纳米颗粒(NPs)封装在MOFs中的研究在催化领域引起了科学家的兴趣.其中,较大比表面积的MOFs可以为NPs的分散和固定提供理想的平台,而NPs反过来可以为催化反应引入更多的活性位点,提高催化效率.然而,MOFs本身的孔隙常局限于微孔(<2 nm),这极大地限制了NPs在MOFs孔隙中的有效封装.因此,设计并制备含有介孔(2?50 nm)或大孔(>50 nm)的多级孔MOFs,揭示其孔径大小对复杂NPs/MOFs复合催化剂催化性能的影响具有重要意义.然而,具有不同孔径MOFs的可控制备具有巨大挑战性,MOFs孔径如何影响和调控NPs/MOFs复合材料催化活性是一个悬而未决的科学问题.本文结合金属离子刻蚀法和调控配体法设计了两种具有不同孔径(大孔和介孔)的UiO-66,并系统研究了孔径大小对CdS NPs的分布以及所形成的复合催化剂CdS/UiO-66的催化性能的影响及机制.我们首先阐明了UiO-66调控孔径后影响和修饰CdS NPs的空间分布:对于具有开放大孔结构的UiO-66纳米笼,CdS NPs倾向于自发沉积在UiO-66纳米笼内壁上.相比之下,CdS NPs则主要附着于介孔UiO-66的外表面.据此,具有大孔和介孔结构的CdS/UiO-66表现出不同的光催化性能.以光还原4-硝基苯胺反应为例,大孔CdS/UiO-66的反应速率常数是介孔和实心样品的3?13倍,且优于许多文献报道的CdS复合材料催化剂,表明大孔结构在制备高效复合催化材料上的潜在优势.通过光吸收能力、能级结构等计算表征,该催化剂的电子空穴对传输遵循S-型异质结光催化机制;大孔CdS/UiO-66具有较高光催化活性可归因于纳米笼对NPs的限域效应,即CdS被限制在UiO-66纳米笼内,缩短了催化剂与底物之间的电子传输距离;空心纳米笼结构则保护其内部的CdS NPs免受光腐蚀的影响,进而获得较高的催化效率和循环稳定性.可见,本文提出了一种结合离子刻蚀法和调控配体法获得具有不同孔径MOFs的有效策略,阐明了调控MOFs的孔径尺寸可以影响NPs的空间分布,是制约其性能的关键因素,有望为高效催化剂的设计及催化机制的研究提供新的依据.  相似文献   
48.
We report on the design of a UO22+‐selective electrode based on the use of UO22+ imprinted polymer nanoparticles (IP‐NPs), and its application for the differential pulse adsorptive cathodic stripping voltammetry determination of uranyl ions. A carbon paste electrode was modified with the IP‐NPs, and differential pulse adsorptive cathodic stripping voltammetry was applied as the detection technique after open‐circuit sorption of UO22+ ions. The modified electrode responses to UO22+ was linear in the 0.1 µg L?1 to 10 µg L?1 and in the 0.01 mg L?1 to 10 mg L?1. The method detection limit of the sensor was 0.03 µg L?1.  相似文献   
49.
The laser is a very powerful and very useful instrument in modern nanoscience and nanotechnology. The knowledge of the interaction mechanism of the laser beam with nanoparticles is needed to control the laser processing of different nano‐objects. It was shown that the particle heating–melting–evaporation model can be successfully applied for many phenomena arising when colloidal nanoparticle interact with pulsed laser beams. The general approach of this model is discussed in detail. The two main components of the model, light absorption by particles, and the thermodynamics of phase transitions in particulate material are considered. Special attention is devoted to the correct estimation of the possible heat losses. The way in which the phase diagrams, where the different phase conditions of particle material are presented in laser fluence−particle diameter coordinates, were produced is demonstrated. It is shown how this model can be applied for understanding the mechanism of such complicated processes as particle‐size reduction and submicrometer spherical particle growth, as well as other processes that occur when colloidal particles are irradiated by a pulsed laser.  相似文献   
50.
We here in report an extensive study on the development of a highly facile, selective and sensitive colorimetric probe for cysteine detection using silver nanoparticles (Ag NPs). The efficacy of the process relies upon the surface plasmon resonance properties of Ag NPs and the interaction of Ag-cysteine complex with chromium ions (Cr3+) in a ratio of 2:1. In the presence of Cr3+, cysteine was able to induce the aggregation of Ag NPs thereby resulting in a change in yellow colour of the Ag colloid to purple. The reported probe has a limit of detection down to 1 nM which is to the best of our knowledge the lowest ever reported for the colorimetric detection of cysteine. Furthermore, a remarkable feature of this method is that it involves a simple technique exhibiting high selectivity to cysteine over other tested amino acids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号