首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   14篇
  国内免费   9篇
化学   134篇
力学   1篇
综合类   1篇
物理学   24篇
  2024年   1篇
  2023年   14篇
  2022年   20篇
  2021年   15篇
  2020年   19篇
  2019年   11篇
  2018年   15篇
  2017年   8篇
  2016年   6篇
  2015年   3篇
  2014年   4篇
  2013年   15篇
  2012年   11篇
  2011年   6篇
  2010年   5篇
  2008年   2篇
  2007年   4篇
  2004年   1篇
排序方式: 共有160条查询结果,搜索用时 15 毫秒
121.
A highly sensitive amperometric biosensor for the detection of organophosphate pesticides (OPs) is developed. The biosensor was fabricated by immobilized acetylcholinesterase (AChE) on manganese (III) meso‐tetraphenylporphyrin (MnTPP) nanoparticles (NPs)‐modified glassy carbon (GC) electrode. The MnTPP NPs used in this article were synthesized by mixing solvent techniques. AChE enzyme was immobilized on the MnTPP NPs surface by conjugated with chitosan (CHIT). The electrocatalytic activity of MnTPP NPs led to a greatly improved performance for thiocholine (TCh) product detection. The developed AChE‐CHIT/MnTPPNP/GC biosensor integrated with a flow‐injection analysis (FIA) system was used to monitor trichlorfon (typical OP). A wide linear inhibition response for trichlorfon is observed in the range of 1.0 nM–1.0 mM, corresponding to 10–83% inhibition for AChE with a detection limit of 0.5 nM.  相似文献   
122.
《印度化学会志》2023,100(2):100920
In the present work, silver-doped ZnO (Ag–ZnO NPs) with different concentrations of silver ions (0.3, 0.5, 1.0 and 1.5 mol %) were synthesized by using a simple co-precipitation method. The Ag–ZnO NPs were primarily characterized by XRD, FT-IR, SEM, EDS, TEM, UV–Vis. DRS, PL and BET surface area. The XRD analysis of Ag–ZnO NPs shows a wurtzite structure and optimized Ag–ZnO NPs (1.0 mol %) exhibit a lower crystallite size of 15.96 nm than that of bare ZnO (19.07 nm). Optical study shows a decrease in band gap from 3.13 to 2.97 eV as the concentration of Ag ions increases from 0.3 to 1.5 mol%. TEM images reveal the spherical shape particle with sizes ranging between 10 and 15 nm. From the multipoint BET plot, the surface area of Ag–ZnO NPs found 38.06 m2/gwhich is higher than the ZnO NPs (34.48 m2/g). The photocatalytic study demonstrated that the Ag–ZnO NPs (1.0 mol %) has an excellent photodegradation efficiency of Methyl Orange (96.74%)with a 26% increment as compared to bare ZnO (70.47%). Furthermore, the bactericidal activity of Ag–ZnO NPs (1.0 mol %) was investigated against four different bacterial strains. The results explored that the Gram-negative bacteria (E. coli and P. vulgaris) are more sensitive than Gram-positive (S. aureus and B. cereus) to Ag–ZnO NPs. Overall, the anticipated material is economical and reusable for photodegradation and antibacterial activity.  相似文献   
123.
《Mendeleev Communications》2023,33(3):340-342
Internalization of poloxamer 188-coated PLGA nanoparticles (NPs) in GL261 murine glioma cells was studied using confocal laser scanning microscopy. For visualization, both poloxamer 188 (P188) and PLGA were labeled covalently with fluorescent dyes Rhodamine B and Cyanine5, respectively. The results indicated that the PLGA NPs coated with poloxamer 188 enter a cell as an integral core–shell structure, which can be helpful for gaining further insight into the in vivo performance of surfactant-coated polymeric NPs as core–shell delivery systems  相似文献   
124.
In this study, for the first time, the electro-polymerization of Direct blue15 (DB15), an azo dye, was carried out on the surface of ITO. Furthermore, the poly(DB15) surface was electrochemically decorated with Ag nanoparticles (AgNPs), and the fabricated AgNPs/PDB15 electrodes were examined as nitrate sensors. Compared to unmodified ITO electrode, the AgNPs/PDB15 electrode had greatly improved electrochemical response to nitrate reduction. The nitrate determination in a linear range from 1.0×10−5 mol L−1 to 2.27×10−3 mol L−1 was performed with a detection limit of 9.66 μM. The synthesized electrode is a promising sensor for the electrochemical detection of nitrate pollutants in water.  相似文献   
125.
The inhibition of platelet aggregation, and the activity of oxidoreductases and microhemocirculation in a burn wound on the treatment of burns with wound dressings based on bacterial nanocellulose (BC)-zinc oxide nanoparticles (ZnO NPs)-betulin diphosphate (BDP) were studied. The control of the treatment by BC-ZnO NPs-BDP on burned rats by the noninvasive DLF method showed an increase in perfusion and the respiratory component in wavelet spectra, characterizing an improvement in oxygen saturation in the wound. The study on the volunteers’ blood found the inhibition of ADP-induced platelet aggregation by 30–90%. Disaggregation depends on the dose under the action of the ionized form of BDP and ZnO NPs-BDP in a phosphate buffer; it was reversible and had two waves. It was shown on rats that the specific activity of LDHreverse and LDHdirect (control-intact animals) on day 21 of treatment increased by 11–38% and 23%, respectively. The LDHreverse/LDHdirect ratio increased at BC-ZnO NPs-BDP treatment, which characterizes efficient NAD+ regeneration. AlDH activity increased significantly in the first 10 days by 70–170%, reflecting the effectiveness of the enzyme and NAD+ in utilizing toxic aldehydes at this stage of burn disease. The activities of GR and G6PDH using NADP(H) were increased with BC-ZnO NPs-BDP treatment.  相似文献   
126.
The tuning of photophysical properties of the poly[2-methoxy-5-(3,7-dimethyl-octyloxy)-1,4-phenylenevinylene]—end capped with dimethylphenyl (DMP), MDMO-PPV–DMP, was achieved by incorporation of ZnO NPs with various contents. Hybrid nanocomposites of MDMO-PPV–DMP with ZnO NPs were prepared by solution blending method and then deposited onto glass substrates. The structural properties of the hybrid nanocomposites samples were characterized using X-ray diffraction, FTIR, and FE-SEM, while their optical properties were extracted from the absorption and photoluminescence spectra. The energy band gap, energy tail, steepness parameter, and CIE chromatic coordinates were tuned by increase the content of ZnO NPs into the polymer matrix. The ZnO NPs incorporation assists the emission wavelength shift and multicolor emitting from the hybrid nanocomposites.  相似文献   
127.
We synthesized yttrium-doped CNT-ZnO (CNT-YZO) nanoparticles (NPs) and nanoflowers (NFs) from the hydrothermal method at 130 °C. The effect of Y3+-concentrations in nanostructured CNT-YZO was determined in terms of the photocatalytic degradation of methylene blue (MB). Microstructural analysis showed the hexagonal cubic structure of ZnO regardless of Y-concentration or the addition of CNTs during the nucleation and growth. The specific surface area, total pore volume, and mean pore diameter of typical CNT-YZO NFs were observed to be 36.109 m2/g, 0.162 cm3/g, and 17.932 nm, respectively. The photocatalytic degradation performance of CNT-YZO NFs improved due to increase reactive sites of the catalyst and reduced recombination of photo-induced carriers. The surface-area normalized first-order decomposition rates (r/m2) of CNT-YZO NFs showed the highest photocatalytic degradation (99%). The CNT-YZO has produced a new kind of material for the photocatalytic degradation under the irradiation of visible light using a solar simulator.  相似文献   
128.
免标型沙丁胺醇免疫电化学传感器   总被引:1,自引:0,他引:1  
构建了以茜素为探针,二氧化钛掺杂乙炔黑和壳聚糖复合材料为信号放大平台的新型免标型沙丁胺醇免疫传感器。于修饰电极的表面电沉积金纳米粒子,实现沙丁胺醇抗体的固定并进一步增大电流响应。采用扫描电子显微镜(SEM)对材料进行表征,循环伏安法(CV)和电化学阻抗谱图(EIS)对修饰电极的构建过程及传感器的性能进行电化学表征。采用差分脉冲伏安法(DPV)检测茜素在修饰电极表面的峰电流值,不同浓度的沙丁胺醇(SAL)抗原与抗体发生免疫亲和反应后,该峰电流值随着沙丁胺醇浓度的增大而减小,并呈线性关系,据此建立峰电流值与沙丁胺醇浓度的关系并实现了对沙丁胺醇的定量检测。探究了缓冲溶液p H值、孵化温度和孵化时间对免疫传感器的影响。在最佳条件下,该免疫传感器对沙丁胺醇的线性响应范围为1.0~100μg/L,检出限(LOD)为0.67μg/L(3σ/k)。该免疫传感器具有良好的重现性、选择性和稳定性,已成功用于猪饲料和猪肉样品中沙丁胺醇的检测,加标回收率分别为100.2%~102.4%(相对标准偏差为1.9%~4.7%)和97.5%~103.3%(相对标准偏差为2.1%~3.5%)。  相似文献   
129.
The use of non-toxic synthesis of iron oxide nanoparticles (FeO NPs) by an aqueous plant extract has proven to be a viable and environmentally friendly method. Therefore, the present investigation is based on the FeO NPs synthesis by means of FeCl3·6H2O as a precursor, and the plant extract of Nephrolepis exaltata (N. exaltata) serves as a capping and reducing agent. Various techniques were used to examine the synthesized FeO NPs, such as UV-Visible Spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray (EDX). The FT-IR studies were used to identify different photoactive biomolecules at 3285, 2928, 1415, 1170, and 600 cm−1 in the wavenumber range from 4000 to 400 cm−1, indicating the -OH, C-H, C-O, C-C, and M-O groups, respectively. The XRD examination exhibited crystallinity, and the average diameter of the particle was 16 nm. The spherical nature of synthesized FeO NPs was recognized by SEM images, while the elemental composition of nanoparticles was identified by an EDX spectrophotometer. The antiplasmodial activity of synthesized FeO NPs was investigated against Plasmodium parasites. The antiplasmodial property of FeO NPs was evaluated by means of parasite inhibitory concentration, which showed higher efficiency (62 ± 1.3 at 25 μg/mL) against Plasmodium parasite if compared to plant extracts and precursor. The cytotoxicity of FeO NPs was also assessed in human peripheral blood mononuclear cells (PBMCs) under in vitro conditions. The lack of toxic effects through FeO NPs keeps them more effective for use in pharmaceutical and medical applications.  相似文献   
130.
A facile and sensitive electrochemical aptamer sensor (aptasensor) based on Au nanoparticles-decorated porous carbon (AuNPs/PC) composite was developed for the efficient determination of the antibiotic drug chloramphenicol (CAP). AuNPs modified metal-organic framework (AuNPs/ZIF-8) is applied as a precursor to synthesize the porous carbon with homogeneous AuNPs distribution through a direct carbonization step under nitrogen atmosphere. The as-synthesized AuNPs/PC exhibits high surface area and improved conductivity. Moreover, the loading AuNPs could enhance the attachment of the aptamers on the surface of electrode through the Au–S bond. When added to CAP, poorly conductive aptamer-CAP complexes are formed on the sensor surface, which increases the hindrance to electron transfer resulting in a decrease in electrochemical signal. Based on this mechanism, the developed CAP aptasensor represents a wide linear detection range of 0.1 pM to 100 nM with a low detection limit of 0.03 pM (S/N = 3). In addition, the proposed aptasensor was employed for the analysis of CAP in honey samples and provided satisfactory recovery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号