首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81343篇
  免费   11649篇
  国内免费   4219篇
化学   74388篇
晶体学   1094篇
力学   1648篇
综合类   92篇
数学   12890篇
物理学   7099篇
  2024年   57篇
  2023年   443篇
  2022年   462篇
  2021年   686篇
  2020年   1336篇
  2019年   3075篇
  2018年   2898篇
  2017年   3159篇
  2016年   3667篇
  2015年   5863篇
  2014年   5821篇
  2013年   8458篇
  2012年   6462篇
  2011年   6213篇
  2010年   5206篇
  2009年   5163篇
  2008年   5647篇
  2007年   4860篇
  2006年   4346篇
  2005年   4067篇
  2004年   3463篇
  2003年   3117篇
  2002年   3709篇
  2001年   2036篇
  2000年   1870篇
  1999年   1096篇
  1998年   529篇
  1997年   414篇
  1996年   377篇
  1995年   378篇
  1994年   320篇
  1993年   242篇
  1992年   247篇
  1991年   152篇
  1990年   147篇
  1989年   146篇
  1988年   116篇
  1987年   82篇
  1986年   80篇
  1985年   107篇
  1984年   95篇
  1983年   56篇
  1982年   91篇
  1981年   71篇
  1980年   64篇
  1979年   63篇
  1978年   54篇
  1977年   38篇
  1976年   39篇
  1973年   34篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Extensive research has been devoted to the chemical manipulation of carbon nanotubes. The attachment of molecular fragments through covalent‐bond formation produces kinetically stable products, but implies the saturation of some of the C? C double bonds of the nanotubes. Supramolecular modification maintains the structure of the SWNTs but yields labile species. Herein, we present a strategy for the synthesis of mechanically interlocked derivatives of SWNTs (MINTs). In the key rotaxane‐forming step, we employed macrocycle precursors equipped with two π‐extended tetrathiafulvalene SWNT recognition units and terminated with bisalkenes that were closed around the nanotubes through ring‐closing metathesis (RCM). The mechanically interlocked nature of the derivatives was probed by analytical, spectroscopic, and microscopic techniques, as well as by appropriate control experiments. Individual macrocycles were observed by HR STEM to circumscribe the nanotubes.  相似文献   
992.
Many details pertaining to the formation and interactions of protein aggregates associated with neurodegenerative diseases are invisible to conventional biophysical techniques. We recently introduced 15N dark‐state exchange saturation transfer (DEST) and 15N lifetime line‐broadening to study solution backbone dynamics and position‐specific binding probabilities for amyloid β (Aβ) monomers in exchange with large (2–80 MDa) protofibrillar Aβ aggregates. Here we use 13Cmethyl DEST and lifetime line‐broadening to probe the interactions and dynamics of methyl‐bearing side chains in the Aβ‐protofibril‐bound state. We show that all methyl groups of Aβ40 populate direct‐contact bound states with a very fast effective transverse relaxation rate, indicative of side‐chain‐mediated direct binding to the protofibril surface. The data are consistent with position‐specific enhancements of 13Cmethyl‐${R{{{\rm tethered}\hfill \atop 2\hfill}}}$ values in tethered states, providing further insights into the structural ensemble of the protofibril‐bound state.  相似文献   
993.
Versatile ruthenium(II) complexes allow for site‐selective C? H oxygenations with weakly‐coordinating aldehydes. The challenging C? H functionalizations proceed with high chemoselectivity by rate‐determining C? H metalation. The new method features an ample substrate scope, which sets the stage for the step‐economical preparation of various bioactive heterocycles.  相似文献   
994.
Three polyacetylenes, one novel and two known, were isolated from the root of Angelica tenuissima. Using 1H‐ and 13C‐NMR, COSY, HMBC, and HMQC, their structures were found to be (3R,8S)‐heptadeca‐1‐en‐4,6‐diyne‐3,8‐diol ( 1 ), falcarindiol ( 2 ), and oplopandiol ( 3 ). Absolute configurations of compound 1 were established using Mosher's esterification. In addition, the polyacetylenes ( 1 – 3 ) were evaluated for their anti‐inflammatory activity. Compounds 1 and 3 showed potent inhibitory activity against lipopolysaccharide‐induced nitric oxide (NO) production in RAW267.7 macrophage cells with IC50 values of 4.31 and 5.06 μm, respectively. Compound 1 strongly inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)‐2 in a concentration‐dependent manner.  相似文献   
995.
The MReaDy program was designed for studying Multiprocess Reactive Dynamic systems, that is, complex chemical systems involving different and concurrent reactions. It builds a global potential energy surface integrating a variety of potential energy surfaces, each one of them representing an elementary reaction expected to play a role in the chemical process. For each elementary reaction, energy continuity problems may happen in the transition between potential energy surfaces due to differences in the functional form for each of the fragments, especially if built by different authors. A N‐dimensional switch function is introduced in MReaDy in order to overcome such a problem. As an example, results of a collision trajectory calculation for H2 + OH → H3O are presented, showing smooth transition in the potential energy, leading to conservation in the total energy. Calculations for a hydrogen combustion system from 1000 K up to 4000 K shows a variation of 0.012% when compared to the total energy of the system. © 2016 Wiley Periodicals, Inc.  相似文献   
996.
The structural properties and reactivity of iron‐sulfur proteins are greatly affected by interactions between the prosthetic groups and the surrounding amino acid residues. Thus, quantum chemical investigations of the structure and properties of protein‐bound iron‐sulfur clusters can be severely limited by truncation of computational models. The aim of this study was to identify, a priori, significant interactions that must be included in a quantum chemical model. Using the [2Fe‐2S] accessory cluster of the FeFe‐hydrogenase as a demonstrative example with rich electronic structural features, the electrostatic and covalent effects of the surrounding side chains, charged groups, and backbone moieties were systematically mapped through density functional theoretical calculations. Electron affinities, spin density differences, and delocalization indexes from the quantum theory of atoms in molecules were used to evaluate the importance of each interaction. Case studies for hydrogen bonding and charged side‐chain interactions were used to develop selection rules regarding the significance of a given protein environmental effect. A set of general rules is proposed for constructing quantum chemical models for iron‐sulfur active sites that capture all significant interactions from the protein environment. This methodology was applied to our previously used models in galactose oxidase and the 6Fe‐cluster of FeFe‐hydrogenase. © 2016 Wiley Periodicals, Inc.  相似文献   
997.
The accurate ground‐state potential energy surface of silicon dicarbide, SiC2, has been determined from ab initio calculations using the coupled‐cluster approach. Results obtained with the conventional and explicitly correlated coupled‐cluster methods were compared. The core‐electron correlation, higher‐order valence‐electron correlation, and scalar relativistic effects were taken into account. The potential energy barrier to the linear SiCC configuration was predicted to be 1782 cm?1. The vibration‐rotation energy levels of the SiC2, 29SiC2, 30SiC2, and SiC13C isotopologues were calculated using a variational method. The experimental vibration‐rotation energy levels of the main isotopologue were reproduced to high accuracy. In particular, the experimental energy levels of the highly anharmonic vibrational ν3 mode of SiC2 were reproduced to within 6.7 cm?1, up to as high as the v3 = 16 state.  相似文献   
998.
A simple and rapid method based on micro‐liquid chromatography using a synthetic monolithic capillary column was developed for determination of iohexol in human serums, a marker to evaluate the glomerular filtration rate. A hydrophilic methacrylic acid‐ethylene dimethacrylate monolith provided excellent selectivity and efficiency for iohexol with separation time of 3 min using a mobile phase of 40:60 v/v 50 mM phosphate buffer pH 5/methanol. Four serum protein removal, methods using perchloric acid, 50% acetonitrile, 0.1 M zinc sulfate, and centrifuge membrane filter were examined. The method of zinc sulfate was chosen due to its simplicity, compatibility with the mobile phase system, nontoxicity, and low cost. Interday calibration curves were conducted over iohexol concentrations range of 2–500 mg/L (R2 = 0.9997 ± 0.0001) with detection limit of 0.44 mg/L. Intra‐ and interday precisions for peak area and retention time were less than 2.8 and 1.4%, respectively. The method was successfully applied to serum samples with percent recoveries from 102 to 104. The method was applied to monitor released iohexol from healthy subject. Compared with the commercially available reversed‐phase high‐performance liquid chromatography method, the presented method provided simpler chromatogram, faster separation with higher separation efficiency and much lower sample and solvent consumption.  相似文献   
999.
In this study, the magnetic materials known as polymerized ionic liquid@3‐(trimethoxysilyl)propyl methacrylate@Fe3O4 nanoparticles were synthesized and utilized as potential adsorbents. First, these nanoparticles were applied to the analysis of sulfonamides and quinolones present in different water samples using magnetic solid phase extraction and high‐performance liquid chromatography. Under optimized conditions, the developed method showed excellent detection sensitivity, with limits of detection (S/N = 3) and quantification limits (S/N = 10) within 0.2–1.0 and 0.8–3.4 μg/L, respectively. The spiked recoveries of the SAs and QNs in environmental water samples ranged from 83.5 to 103.0%, with RSDs of less than 4.5%. In addition, the adsorbents effectively removed sulfamethoxazole and ofloxacin present in existing aquatic environments. The adsorption kinetics and isotherms of sulfamethoxazole and ofloxacin on the magnetic adsorbents were studied to assess removal performance. The results indicate that the adsorption process follows a pseudo‐second‐order mechanism, which reveals that the sorption mechanism is the rate‐limiting step and produces high qmax values (sulfamethoxazole = 70.35 mg/g and ofloxacin = 48.95 mg/g), thus demonstrating the enormous adsorption capacity of these magnetic adsorbents.  相似文献   
1000.
Solid polymer electrolytes are attractive materials for use as battery separators. Here, a molecular weight series of polystyrene–polyethylene oxide (PEO) multiblock copolymers was synthesized by the thiol–norbornene click reaction. The subsequent materials were characterized both neat and with a lithium bis‐(trifluoromethane)sulfonimide salt loading [(Li)/(EO)] of 0.1. In general, neat samples demonstrated crystallinity scaling with PEO content. Lithium ion‐containing samples had broad scattering peaks, half of which displayed disordered scattering, even at the lowest block molecular weights (polystyrene = 1 kg/mol, PEO = 1 kg/mol). Fitting of disordered scattering data, using the random phase approximation, yielded χRPA and Rg values that were compared with recent predictive work by Balsara and coworkers. The predictions were accurate near the volume fraction fPEO = 0.5 but deviated symmetrically with volume fraction asymmetry. Samples were also analyzed by electrochemical impedance spectroscopy for their potential to conduct lithium ions. Samples with fPEO ≥ 0.5 demonstrated robust conductivity, whereas samples below this volume fraction conducted very poorly, with one exception (fPEO = 0.24). This work expanded upon our recently reported approach to multiblock copolymer synthesis, demonstrating the improved access of materials to further our fundamental understanding of multiblock copolymers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号