首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8696篇
  免费   860篇
  国内免费   417篇
化学   3386篇
晶体学   55篇
力学   1172篇
综合类   120篇
数学   2405篇
物理学   2835篇
  2024年   10篇
  2023年   84篇
  2022年   205篇
  2021年   226篇
  2020年   273篇
  2019年   254篇
  2018年   188篇
  2017年   289篇
  2016年   339篇
  2015年   276篇
  2014年   442篇
  2013年   655篇
  2012年   459篇
  2011年   542篇
  2010年   447篇
  2009年   569篇
  2008年   569篇
  2007年   561篇
  2006年   499篇
  2005年   415篇
  2004年   364篇
  2003年   333篇
  2002年   306篇
  2001年   231篇
  2000年   209篇
  1999年   203篇
  1998年   152篇
  1997年   147篇
  1996年   121篇
  1995年   82篇
  1994年   72篇
  1993年   64篇
  1992年   69篇
  1991年   47篇
  1990年   41篇
  1989年   39篇
  1988年   39篇
  1987年   27篇
  1986年   21篇
  1985年   19篇
  1984年   20篇
  1983年   6篇
  1982年   14篇
  1981年   5篇
  1980年   5篇
  1979年   5篇
  1977年   4篇
  1976年   4篇
  1974年   5篇
  1957年   4篇
排序方式: 共有9973条查询结果,搜索用时 15 毫秒
991.
Two different modeling techniques, the method of moments and Monte Carlo simulation, were compared for propylene polymerization with coordination catalysts including a new mechanistic step, site transformation by electron donors. We used the models to show how the molecular weight and tacticity distributions of several poly(propylene) chain populations were affected by changing the concentration of hydrogen, electron donor, and propylene in the reactor, under steady‐state or dynamic operating conditions. The Monte Carlo simulation describes the molecular weight and tacticity distributions for the whole polymer and chain populations with distinct microstructural characteristics. We have also applied the Monte Carlo model to simulate the pentad sequence distributions and its equivalent 13C NMR spectra.

  相似文献   

992.
993.
Deformation induced softening is an inelastic phenomenon frequently accompanying mechanical response of soft biological tissues. Inelastic phenomena which occur in mechanical testing of biological tissues are very likely to be associated with alterations in the internal structure of these materials.In this study, a novel structural constitutive model is formulated to describe the inelastic effects in soft biological tissues such as Mullins type behavior, damage and permanent set as a result of residual strains after unloading. Anisotropic softening is considered by evolution of internal variables governing the anisotropic properties of the material. We consider two weight factors wi (softening) and sk (discontinuous damage) as internal variables characterizing the structural state of the material. Numerical simulations of several soft tissues are used to demonstrate the performance of the model in reproducing the inelastic behavior of soft biological tissues.  相似文献   
994.
The energy release rate criterion, being mono scale by definition, is incompatible with the failure behavior of solids that are inherently dual, if not, multiscale. Time span of reliability is scale sensitive and can be addressed with consistency only by use of transitional functions that are designed to transform a function from one scale to another. A pseudo transitional energy release rate G is defined to address the cross-scaling properties of energy release rate. The reliability of such a function is found to fall quickly when the scale range deviates from that of micro-macro. In general, the time span of reliability based on G* shortens considerably within the nano-micro and pico-nano scale ranges, resulting in fast turnover of system usability. Prediction accuracy tends to be scale range specific. Stress or strain based criteria are also mono scale. They may be adequate for some situations at the macroscopic scale, but can be ambiguous for multiscale problems. These situations are analyzed by application of the principle of least variance in conjunction with the R-integrals.Accelerated test data for the equivalent of 20 years’ fatigue crack growth in 2024-T3 aluminum panels were analyzed using the mutliscale reliability model. A time span plateau within the micro-macro range is from 8 to 17 years. This corresponds to the reliable portion of prediction, while the terminal 3 years are regarded as unreliable. A similar time span plateau were also found from 4 to 6 years within the nano-micro scale range. And an even smaller plateau hovering around 1.2 years were found for the pico-nano scale range. Time span of reliable prediction narrows with down sized scale range. The overlapping ends of the scale ranges are rendered unreliable as anticipated. These regions can be suppressed by the addition of meso scale ranges. Reference can be made to past discussions related to multiscaling and mesomechanics.  相似文献   
995.
The present investigation studies the peristaltic flow of the Jeffrey fluid through a tube of finite length. The fluid is electrically conducting in the presence of an applied magnetic field. Analysis is carried out under the assumption of long wavelength and low Reynolds number approximations. Expressions of the pressure gradient, volume flow rate, average volume flow rate, and local wall shear stress are obtained. The effects of relaxation time, retardation time, Hartman number on pressure, local wall she...  相似文献   
996.
With the two-scale expansion technique proposed by Yoshizawa,the turbulent fluctuating field is expanded around the isotropic field.At a low-order two-scale expansion,applying the mode coupling approximation in the Yakhot-Orszag renormalization group method to analyze the fluctuating field,the Reynolds-average terms in the Reynolds stress transport equation,such as the convective term,the pressure-gradient-velocity correlation term and the dissipation term,are modeled.Two numerical examples:turbulent flow past a backward-facing step and the fully developed flow in a rotating channel,are presented for testing the efficiency of the proposed second-order model.For these two numerical examples,the proposed model performs as well as the Gibson-Launder (GL) model,giving better prediction than the standard k-ε model,especially in the abilities to calculate the secondary flow in the backward-facing step flow and to capture the asymmetric turbulent structure caused by frame rotation.  相似文献   
997.
It has been shown that the plastic response of many materials, including some metallic alloys, depends on the stress state. In this paper, we describe a plasticity model for isotropic materials, which is a function of the hydrostatic stress as well as the second and third invariants of the stress deviator, and present its finite element implementation, including integration of the constitutive equations using the backward Euler method and formulation of the consistent tangent moduli. Special attention is paid for the adoption of the non-associated flow rule. As an application, this model is calibrated and verified for a 5083 aluminum alloy. Furthermore, the Gurson-Tvergaard-Needleman porous plasticity model, which is widely used to simulate the void growth process of ductile fracture, is extended to include the effects of hydrostatic stress and the third invariant of stress deviator on the matrix material.  相似文献   
998.
The interpretation of sheet forming simulations relies on failure criteria to define the limits of metal deformation. The common requirements for these criteria across a broad range of application areas have not yet been satisfied or fully identified, and a single criterion to satisfy all needs has not been developed. Areas where existing criteria appear to be lacking are in the comprehension of the effects of non-proportional loading, general non-planar and triaxial stress loading, and process and material mechanisms that differentiate between necking and fracture. This study was mainly motivated to provide an efficient method for the analysis of necking and fracture limits for sheet metals. In this paper, a model for the necking limit is combined with a model for the fracture limit in the principal stress space by employing a stress-based forming limit curve (FLC) and the maximum shear stress (MSS) criterion. A new metal failure criterion for in-plane isotropic metals is described, based on and validated by a set of critical experiments. This criterion also takes into consideration of the stress distribution through the thickness of the sheet metal to identify the mode of failure, including localized necking prior to fracture, surface cracking, and through-thickness fracture, with or without a preceding neck. The fracture model is also applied to the openability of a food can for AA 5182. The predicted results show very good agreement with the experimentally observed data.  相似文献   
999.
Dielectric elastomer (DE) is one type of electro-active polymers (EAP) that responds to electrical stimulation with a significant shape and size change. As EAPs, dielectric elastomers are lightweight, inexpensive, pliable and can be fabricated into various shapes, all of which are attractive properties to justify the intense research in the field. This paper presents a nonlinear, electrical and mechanical coupled, large deformation finite element formulation for DEAs. Maxwell’s equations for the electroquasistatic fields were solved simultaneously with equation of linear momentum. The hyperelastic Ogden model and total Maxwell stress method were combined to describe the material. The formulation was based on the weak forms of Maxwell’s equation and linear momentum expressed in the reference configuration. The closed form consistent tangent moduli for dielectric elastomers were derived. The results of the simulation compared with the experiments have demonstrated the validity of the method from the computational aspect.  相似文献   
1000.
杆件由于爆炸、腐蚀等发生脆性破坏后引起剩余结构的振动和压杆由于失稳过程中的弹性突跳(Snap-through)引起的相邻结构振动是张弦结构倒塌过程中常伴生的两种动力现象。本文对第一种动力响应产生的原因、失效构件的模拟方法进行了分析,说明进行张弦结构抗连续倒塌的动力分析应采用初始条件法模拟构件的失效。根据张弦结构的特点,从构件失效和结构失效两方面提出了张弦结构倒塌失效的评估准则,并采用变换荷载路径法通过静力连续倒塌分析找出张弦结构各部分的关键构件;然后采用初始条件法按考虑几何非线性、阻尼比、材料非线性等分别模拟这些关键构件失效引起的动力响应,得到了平面张弦结构各部分构件失效的动力特性、动力放大系数和失效构件的位置,并对不同失效时间进行动力响应分析得到张弦结构动力效应与构件失效时间的关系曲线。最后给出张弦结构进行抗连续倒塌分析的一些结论和建议,如进行连续倒塌动力时程分析时初始失效杆件选取和失效时间取值以及弹性动力放大系数与塑性动力放大系数的区别等,为张弦结构的抗连续倒塌设计提供技术支持和参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号