首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   9篇
  国内免费   22篇
化学   208篇
晶体学   1篇
力学   1篇
综合类   1篇
数学   1篇
物理学   13篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   10篇
  2020年   6篇
  2019年   6篇
  2018年   10篇
  2017年   8篇
  2016年   13篇
  2015年   5篇
  2014年   10篇
  2013年   17篇
  2012年   11篇
  2011年   9篇
  2010年   11篇
  2009年   9篇
  2008年   11篇
  2007年   15篇
  2006年   11篇
  2005年   11篇
  2004年   7篇
  2003年   6篇
  2002年   9篇
  2001年   6篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
排序方式: 共有225条查询结果,搜索用时 15 毫秒
41.
通过开环共聚合,合成了3种不同单元比例的ε-己内酯(ε-CL)与L-丙交酯(L-LA)的共聚物P(CL-co-LA)。通过熔融共混制备了聚乳酸(PLA)/聚己内酯(PCL)/P(CL-co-LA)三元共混材料,研究了P(CL-co-LA)对共混材料微观形貌、热性能以及力学性能的影响。 结果表明,共聚物P(CL-co-LA)作为PLA/PCL不相容体系的界面增容剂,减小了PCL分散相的尺寸,改善了PLA/PCL共混体系的相容性,提高了共混材料的韧性。 固定m(PLA):m(PCL):m(P(CL-co-LA))=80:20:10时,以P(CL49/LA51)(其中数字代表摩尔分数(%))作为界面增容剂效果最佳,共混材料的断裂伸长率可达到(210±30)%。  相似文献   
42.
Bis-hydroxyl-terminated poly(1,2-propylene succinate) (PPS-diols) with high molecular weight (10–40 kDa) are prepared by two-step melt polycondensation of succinic acid and 1,2-propanediol with Ti(BuO)4 as the catalyst. By using these PPS-diols as macroinitiators, the ring-opening polymerization of d - and l -lactides is readily conducted to obtain enantiomeric ABA triblock copolymers consisting of poly(l -lactide) and PPS (B) (t-l -PPS) as well as those of poly(d -lactide) and PPS (B) (t-d -PPS) which have higher PPS compositions (20–70 wt%) in addition to high molecular weight (20–80 kD). The Tg, Tm, and ΔHm values of the t-l -PPS copolymers as well as the stereo mixtures of t-l -PPS/t-d -PPS are controlled to linearly decrease with increasing the PPS content. The copolymers also exhibit higher elastomeric properties with increasing the PPS content. The tensile properties of the copolymer films having higher PPS contents (both the single block copolymers and stereo mixtures) are comparable to those of the oil-based thermoplastic elastomers. It is therefore concluded that these block copolymers can afford thermoplastic elastomers or flexible plastic materials having a 100% biobased content.  相似文献   
43.
The charring agent (CNCA‐DA) containing triazine and benzene rings was combined with ammonium polyphosphate (APP) to form intumescent flame retardant (IFR), and it was occupied to modify polylactide (PLA). The flame retardant properties and mechanism of flame retardant PLA composites were investigated by the limited oxygen index (LOI), vertical burning test (UL‐94), thermogravimetric analysis, microscale combustion calorimetry, scanning electron microscopy, laser Raman spectroscopy analysis and X‐ray photoelectron spectroscopy. The analysis from LOI and UL‐94 presented that the IFR was very effective in flame retardancy of PLA. When the weight ratio of APP to CNCA‐DA was 3:1, and the IFR loading was 30%, the IFR showed the best effect, and the LOI value reached 45.6%. It was found that when 20 wt% IFR was loaded, the flame retardancy of PLA/IFR still passed UL‐94 V‐0 rating, and its LOI value reached 32.8%. The microscale combustion calorimetry results showed that PLA/IFR had lower heat release rate, total heat release, and heat release capacity than other composites, and there was an obvious synergistic effect between APP and CNCA‐DA for PLA. IFR containing APP/CNCA‐DA had good thermal stability and char‐forming ability with the char residue 29.3% at 800°C under N2 atmosphere. Scanning electron microscopy observation further indicated that IFR could promote forming continuous and compact intumescent char layer. The laser Raman spectroscopy analysis and X‐ray photoelectron spectroscopy analysis results indicated that an appropriate graphitization degree of the residue char was formed, and more O and N were remained to form more cross‐linking structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
44.
The syntheses of amphiphilic AB‐type diblock copolymers composed of hydrophobic polylactide segment and hydrophilic polydepsipeptide segment with amino or carboxyl groups were performed. The protected cyclodepsipeptides cyclo[Glc‐Lys(Z)] and cyclo[Glc‐Asp(OBzl)] (where Glc is glycolic acid, Lys is lysine, Asp is aspartic acid, Z is benzyloxycarbonyl, and OBzl is benzyl) were first polymerized in tetrahydrofuran (THF) with potassium ethoxide as an initiator to obtain the corresponding protected polydepsipeptides. After the terminal hydroxyl groups of the protected polydepsipeptides were converted into the potassium alcoholates with K/naphthalene, L ‐lactide was polymerized in the presence of the corresponding polymeric alcoholates as macroinitiators in THF to obtain poly[Glc‐Lys(Z)]‐block‐poly(L ‐lactide) and poly[Glc‐Asp(OBzl)]‐block‐poly(L ‐lactide). Subsequent deprotection of Z and OBzl groups gave the objective amphiphiles poly(Glc‐Lys)‐block‐poly(L ‐lactide) and poly(Glc‐Asp)‐block‐poly(L ‐lactide), respectively. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1218–1225, 2002  相似文献   
45.
Polylactide (PLA)-grafted dextran (Dex-graft-PLA) of various contents of sugar units was synthesized by anionic polymerization of L-lactide (L-LA) using the alkoxide of partially trimethylsilylated dextran (TMSDex) and subsequently removing the trimethylsilyl (TMS) groups. The copolymer showed different solubility from L-LA homopolymer with increasing the content of sugar units. We prepared bovine serum albumin (BSA)-loaded microspheres (MS)s according to a water-in-oil-in-water emulsion-solvent evaporation/extraction method using methylene chloride/DMSO as an organic cosolvent. MSs prepared from Dex-graft-PLA [MS(Dex-graft-PLA)s] exhibited higher loading efficiency of BSA than MSs prepared from PLLA [MS(PLLA)s]. The in vitro release rate of BSA from MS(Dex-graft-PLA) was faster than that from MS(PLLA). BSA released from MS(Dex-graft-PLA) maintained the secondary structure of native BSA to a great extent, compared with BSA released from MS(PLLA).  相似文献   
46.
PLA大分子单体接枝NVP共聚物的合成与性能   总被引:2,自引:0,他引:2  
制备了末端为双键的功能化聚乳酸大分子单体(PLA-HEMA),并以此大分子单体与N-乙烯基吡咯烷酮(NVP)进行自由基溶液共聚,合成了具有亲水性PVP-PHEMA主链和疏水性PLA支链的接枝共聚物。用FT-IR1、H-NMR、GPC、DSC、表面接触角测定研究了共聚物的结构与性能。结果表明:共聚物为非晶聚合物;NVP的摩尔投料量对共聚物的性能有显著影响,随NVP投料量增大,共聚物的分子量有所下降,玻璃化转变温度(Tg)增大;由于亲水性PVP和PHEMA链段的引入,共聚物的亲水性优于相应的线型聚乳酸材料。  相似文献   
47.
Block copolymers create various types of nano‐structures, e. g., spheres, rods, cubes, and lamellae. This review discloses the dynamic macromolecular organization of block copolymers comprising poly(L ‐lactide) (PLLA) and poly(oxyethylene) (PEG) that allows to simulate elaborate biological systems. The block copolymers, AB‐ (PLLA‐PEG) and ABA‐type (PLLA‐PEG‐PLLA), are synthesized by ordinary lactide polymerization to have a controlled block length. They are dispersed into an aqueous medium to prepare nano‐scale particles, consisting of hydrophobic PLLA and hydrophilic PEG in the core and shell, respectively. Then, the particles are placed on a flat substrate by the casting method. The particles are detected as discoids by AFM, having shrunk with loss of water. Heat‐treatment of these particles at 60°C (above Tg of PLLA) gives rise to a collapse into small fragments, which then aggregate into bands with nano‐size width and thickness. The PLLA‐PEG bands align parallel to each other, while the PLLA‐PEG‐PLLA bands form a characteristic network resembling the neuron system created in animal tissue. As analyzed by TEM diffraction, each is composed of α‐crystal of PLLA whose c‐axis (molecular axis) is perpendicular to the substrate surface. Based on this fact, a doubly twisted chain structure of PLLA is proposed in addition to a plausible mechanism for the self‐organization of the block copolymers. Derivatives of the PLLA‐PEG block copolymers can form far more interesting nano‐architectures. An equimolar mixture of enantiomeric copolymers, PLLA‐PEG‐PLLA and PDLA‐PEG‐PDLA, forms a hydrogel that is thermo‐responsive. The terminal‐modified poly(L ‐lactide)‐block‐polyoxyethylene monocinnamate (PLLA‐PEG‐C) forms a highly stabilized nanofiber by the photo‐reaction of the cinnamates placed in the outer layer of the nanobands.  相似文献   
48.
用乳化- 溶剂蒸发法制备了聚己内酯- 聚丙交酯- 聚醚三元无规共聚物微粒,且与用相同方法制备的聚己内酯(PCL) 和聚己内酯- 聚醚嵌段共聚物微粒的形态进行了比较,讨论了材料的亲水性,以及三元无规共聚物中亲水性聚醚链段的长度及含量对所形成微粒形态的影响。研究结果表明,随着聚合物由疏水性向亲水性转变,所生成微粒的形态则从光滑、多孔、到不规则变化。证明了三元无规共聚物多孔微粒的形成是由于亲水的聚醚链段向水相取向所致。在37 ℃、pH7 .4 的缓冲液中进行了三元无规共聚物微粒的降解,结果表明,随着降解时间的延长, 三元无规共聚物的分子量逐渐下降,且其中的聚醚链段含量有明显的降低。  相似文献   
49.
Polyester–polyether block copolymers based on polycaprolactone/poly(ethylene glycol)/polylactide (PCEL) with various compositions were synthesized by direct copolymerization of ϵ‐caprolactone, L ‐lactide and PEG (6000) in the presence of stannous octoate at 130 °C for 56 hr. The degradation behavior of the copolymers was investigated in a pH 7.4 phosphate buffer solution at 37 ±1 °C. Various techniques such as weight, gel permeation chromatography, 1H nuclear magnetic resonance, differential scanning calorimetry and X‐ray diffractometry were used to monitor the changes in water absorption, weight loss, molar mass, molar mass distribution, thermal properties and compositions. The results show that the hydrophilicity of copolymer was enhanced with increasing poly(ethylene oxide) content, which led to the PEG sequences fast release and an increase in weight loss of the copolymer. Bimodal chromatograms were detected in the degradation, which were attributed to the degradation mechanism of the partial crystalline polymer proceeding predominantly in amorphous zones. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
50.
In quest of new, single‐site catalysts for cyclic ester polymerizations, a series of mononuclear yttrium(III) complexes of N,N′‐bis(trimethylsilyl)benzamidinate ([LTMS]) and hindered N,N′‐bis‐(2,6‐dialkylaryl)toluamidinates ([LEt], aryl = Et2C6H3, and [LiPr], aryl = iPr2C6H3) were synthesized and characterized by X‐ray diffraction: LY(μ‐Cl)2Li(TMEDA) ( 1 ), LY(OC6H2tBu2Me) ( 2 ), LY(OC6H3Me2)2Li(THF)4 ( 3 ), LY(μ‐OtBu)2Li(THF) ( 4 ), LiPrY[N(SiMe2H)2]2(THF) ( 5 ), LY(THF)(Cl)(μ‐Cl)Li(THF)3 ( 6 ), and LY[N(SiMe2H)2] ( 7 ). Coordination numbers ranging from five to seven were observed, and they appeared to be controlled by the steric bulk of the supporting amidinate and alkoxide, phenoxide, or amide coligands. Complexes 2 – 5 and 7 are active catalysts for the polymerization of D,L ‐lactide (e.g., with 2 and added benzyl alcohol, 1000 equiv of D,L ‐lactide were polymerized at room temperature in less than 1 h, with polydispersities less than 1.5). The neutral complexes 2 , 5 , and 7 were more effective than the anionic complexes 3 and 4 . In addition, the presence of the more hindered amidinate ligands [LEt] and [LiPr] on yttrium‐amides slowed the polymerizations ( 7 < 5 < Y[N(SiMe2H)2]3). © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 284–293, 2001  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号