首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   14篇
  国内免费   22篇
化学   208篇
晶体学   1篇
力学   1篇
综合类   1篇
数学   1篇
物理学   13篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   10篇
  2020年   6篇
  2019年   6篇
  2018年   10篇
  2017年   8篇
  2016年   13篇
  2015年   5篇
  2014年   10篇
  2013年   17篇
  2012年   11篇
  2011年   9篇
  2010年   11篇
  2009年   9篇
  2008年   11篇
  2007年   15篇
  2006年   11篇
  2005年   11篇
  2004年   7篇
  2003年   6篇
  2002年   9篇
  2001年   6篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
排序方式: 共有225条查询结果,搜索用时 15 毫秒
21.
Starting from calcium sulfate (gypsum) as fermentation by‐product of lactic acid production process, high performance composites have been produced by melt‐blending polylactide (PLA, L/D isomer ratio of 96:4) and β‐anhydrite II (AII) filler, that is, calcium sulfate hemihydrate previously dehydrated at 500 °C. Characterized by attractive mechanical and thermal properties due to good filler dispersion throughout the polyester matrix, these composites are interesting for potential use as biodegradable rigid packaging. Physical characterization of selected composites filled with 20 and 40 wt % AII has been performed and compared to processed unfilled PLA with similar amorphous structure. State of dispersion of the filler particles and interphase characteristic features have been investigated using light microscopy (LM) and scanning electron microscopy (SEM). Addition of AII did not decrease PLA thermal stability as revealed by thermogravimetry analyses (TGA) and allowed reaching a slight increase of PLA crystallizability during melt crystallization and upon heating from the glassy, amorphous state (DSC). It was found by thermomechanical measurements (DMTA) that the AII filler increased pronouncedly storage modulus (E′) of the composites in comparison with PLA in a broad temperature range. The X‐ray investigations showed stable/unchanged crystallographic structure of AII during processing with molten PLA and in the composite system. The notable thermal and mechanical properties of PLA–AII composites are accounted for by the good filler dispersion throughout the polyester matrix confirmed by morphological studies, system stability, and favorable interactions between components. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2770–2780, 2007  相似文献   
22.
A polylactide of high optical purity was crystallized between 100 and 140 °C, in‐between two glass slides, and its morphology was investigated by polarizing optical microscopy, scanning electron microscopy, and atomic force microscopy, during subsequent heating and cooling cycles between ?15 °C and the crystallization temperature. It was found that dark circular rings show up on cooling on top of the spherulites and represent cracks of about 300 nm in width. This phenomenon is completely reversible, and the heating–cooling curves are centered at about 56 °C, which coincide with the Tg of polylactide. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3308–3315, 2005  相似文献   
23.
A Brabender mixer was used to deagglomerate and disperse organomodified montmorillonite Cloisite® 30B (3 wt %) in polylactide (PLA) matrix to obtain nanocomposite systems. The influence of compounding conditions such as blending time (6.5, 10, 20, and 30 min) and compression molding on the nanostructure of nanocomposites was investigated. Molecular weight changes of the PLA matrices induced by melt compounding were determined. Good rheological behavior of the PLA during melt blending with Cloisite® 30B was observed. Prolongation of the blending process improved homogenization of the nanocomposites with the formation of more intercalated and exfoliated structures as revealed by transmission electron microscopy (TEM) and X‐ray analysis. Some orientation of the silicate nanoplatelets induced by compression molding of the nanocomposites was revealed by TEM. It was found that an increase of dispersion degree of the silicate layers modified pronouncedly the physical properties of nanocomposites through an increase of thermal stability as revealed by the thermogravimetric analysis, a decrease of crystallizability of the PLA matrix during melt‐crystallization and upon heating from the glassy, amorphous state. Rheological properties of the nanocomposites determined during dynamic frequency sweep appeared to be very sensitive to the nanostructure evolution. Moreover, the scanning electron microscopy and light microscopy investigations showed the presence of the micron‐size inorganic contaminations in the nanocomposites originating from organoclay Cloisite® 30B. These inclusions were resistive to deagglomeration during melt processing. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3392–3405, 2006  相似文献   
24.
Highly oriented self-reinforced 80/20 blends of polylactide (PLA)/thermoplastic polyurethane elastomer (TPU) were successfully fabricated through solid hot stretching technology. Different from the isotropic sample, stress rose rapidly in a low strain region, and exhibited strain hardening for the drawn samples of the PLA/TPU blend. Superior mechanical properties of the blend, with the notched Charpy impact strength 150 KJ/m2, and tensile strength 197 MPa, were achieved. With increasing hot stretch ratio, the storage modulus increased, the glass transition temperatures of the PLA-rich phase and TPU-rich phase in the blends moved to higher temperatures, and the melting temperature and crystallinity of the blend increased, indicating the stress-induced crystallization of the blend during drawing. The longitudinal fracture surfaces of the blends at different stretch ratios exhibited orderly arranged fibrillar bundle structure, which contributed to the significantly higher strength and toughness of the blend.  相似文献   
25.
《先进技术聚合物》2018,29(7):2121-2133
Polylactide (PLA)/poly(butylene succinate) (PBS) blend films modified with a compatibilizer and a plasticizer were hot‐melted through a twin screw extruder and prepared by hydraulic press. Toluene diisocyanate (TDI) and polylactide‐grafted‐maleic anhydride (PLA‐g‐MA) were used as compatibilizers, while triethyl citrate and tricresyl phosphate acted as plasticizers. The effects of the type and content of compatibilizer and plasticizer on the mechanical characteristics, thermal properties, crystallization behavior, and phase morphology of the PLA/PBS blend films were investigated. Reactive compatibilization at increasing levels of TDI improved the compatibility of the PLA and PBS, affecting the toughness of the films. As evidenced by scanning electron microscope, the addition of TDI enhanced the interfacial adhesion of the blends, leading to the appearance of many elongated fibrils at the fracture surface. Furthermore, PLA/PBS blending with both TDI and PLA‐g‐MA led to an acceleration of the cold crystallization rate and an increment of the degree of crystallinity ( ). Toluene diisocyanate could be a more effective compatibilizer than PLA‐g‐MA for PLA/PBS blend films. The synergistic combination of compatibilizer and plasticizer brought a significant improvement in elongation at break and tensile‐impact toughness of the PLA/PBS blends, compared with neat PLA. Their failure mode changed from brittle to ductile due to the improved compatibility and molecular segment mobility of the PLA and PBS phases. Differential scanning calorimeter results revealed that the plasticizers triethyl citrate and tricresyl phosphate changed the thermal behavior of Tcc and Tm, affecting α′ and α crystal formations. However, these plasticizers only slightly improved the thermal stability of the films.  相似文献   
26.
Via a batch process in an autoclave, the foam processing of neat polylactide (PLA) and two different types of PLA/layered silicate nanocomposites has been conducted using supercritical carbon dioxide as a foaming agent. The morphological correlation between the dispersed silicate particles with nanometer dimensions in the bulk and the obtained closed‐cell structure of the foam is discussed. This is the first report that deals with the possibility of preparing biodegradable nanocellular polymeric foams via nanocomposite technology.

SEM image of the freeze‐fracture surface of a PLA/layered silicate foam, exhibiting closed‐cell structure.  相似文献   

27.
28.
Monodisperse poly(D ,L ‐lactide) (PDLLA) microspheres have been prepared by dispersion polymerization of D ,L ‐lactide with a synthetic polymeric stabilizer. The polymerization is carried out in xylene/heptane (1:2, v/v) at 368 K for 3 h with poly[(dodecyl methacrylate)‐co‐(2‐hydroxyethyl methacrylate)] (P(DMA‐co‐HEMA)). P(DMA‐co‐HEMA) has hydroxy groups as an initiation group for pseudoanionic dispersion polymerization. The particle diameter and the coefficient of variation concerning the diameter distribution of the obtained PDLLA microspheres are 3.9 µm and 4.3%, respectively. In addition, from the results of dynamic light scattering measurements, it is found that P(DMA‐co‐HEMA) and the PDLLA‐grafted copolymer form a micellar structure in solution.

  相似文献   

29.
Bacterial cellulose (BC) is often regarded as a prime candidate nano‐reinforcement for the production of renewable nanocomposites. However, the mechanical performance of most BC nanocomposites is often inferior compared with commercially available polylactide (PLLA). Here, the manufacturing concept of paper‐based laminates is used, i.e., “PaPreg,” to produce BC nanopaper reinforced PLLA, which has been called “nanoPaPreg” by the authors. It is demon­strated that high‐performance nanoPaPreg (vf = 65 vol%) with a tensile modulus and strength of 6.9 ± 0.5 GPa and 125 ± 10 MPa, respectively, can be fabricated. It is also shown that the tensile properties of nanoPaPreg are predominantly governed by the mechanical performance of BC nanopaper instead of the individual BC nanofibers, due to difficulties impregnating the dense nanofibrous BC network.

  相似文献   

30.
Summary: The polylactide‐based nano‐composites were prepared via melt extrusion method using different types of intercalants and nano‐fillers having different surface charge density. In order to understand the direct polymer melt intercalation into the nano‐galleries, the interdigitated layer structure of the organically modified layered filler (OMLF), where the intercalants are oriented with some inclination to the host layer in the interlayer space, was proposed. After polymer melt intercalation, the smaller initial interlayer opening led to the larger interlayer expansion, suggesting the large amount of the intercalation of the polymer chains. Consequently, the nano‐composite exhibited finer dispersion of the nano‐fillers when compared with the nano‐composites prepared from OMLFs with larger initial interlayer opening.

Illustration of a model of interlayer structure of the qC14(OH) in gallery space of HTO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号