首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1917篇
  免费   221篇
  国内免费   760篇
化学   2058篇
晶体学   28篇
力学   62篇
综合类   4篇
数学   6篇
物理学   740篇
  2024年   3篇
  2023年   32篇
  2022年   58篇
  2021年   87篇
  2020年   103篇
  2019年   96篇
  2018年   98篇
  2017年   105篇
  2016年   129篇
  2015年   133篇
  2014年   137篇
  2013年   208篇
  2012年   171篇
  2011年   203篇
  2010年   179篇
  2009年   180篇
  2008年   159篇
  2007年   179篇
  2006年   129篇
  2005年   146篇
  2004年   105篇
  2003年   78篇
  2002年   55篇
  2001年   37篇
  2000年   26篇
  1999年   26篇
  1998年   10篇
  1997年   6篇
  1996年   5篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1991年   2篇
  1990年   3篇
  1988年   1篇
  1984年   1篇
排序方式: 共有2898条查询结果,搜索用时 15 毫秒
101.
Combining photothermal therapy and radiotherapy(PTT-RT) with reducing tumor hypoxia acts as an important antitumor modality. However, it is a great challenge to realize photothermal therapy, radiotherapy and exogenous oxygen supply in one nanosystem. To realize a combination of the three functions, we fabricated a red blood cell membrane(RBCm)-camouflaged, red blood cell content(RBCc) and the copper sulfide(CuS) co-loaded dendritic large pore mesoporous silica nanoparticle(DLMSN/CuS/RBCc/ RBCm). The cell membrane coating endowed the nanoparticles with good stability in the physiological environment, and CuS allowed the nanoparticle exhibiting good photothermal and radiosensitization properties. RBCc loaded nanoparticle DLMSN/CuS/RBCc enhanced superior anti-tumor effect than DLMSN/CuS during combined PTT-RT therapy because the introduction of RBCc increased the exogenous oxygen supply. The in vitro study further demonstrated that the combination of photothermal therapy and radiotherapy induced superior antitumor efficacy than single therapy. Our work thus presents a unique multifunctional nanoscale platform favorable for combined PTT and RT.  相似文献   
102.
Polymer-involved nanoparticles or nanoparticle assemblies are now facing a crossroad, where the exposure of nanoparticle and multiple nanoparticles cannot be obtained at the same time. Therefore, a new series of nanoparticle clusters is synthesized, where multiple gold nanoparticles assemble with amphiphilic block copolymers supporting inside. The exposure of gold nanoparticles of the structure is confirmed and increases the reduction rate of 4-nitrophenol by 60%. The assemblies can also be used as surface enhanced Raman scattering(SERS) probes with an enhancement factor(EF) as high as 3×103.  相似文献   
103.
An aqueous colloidal dispersion of Pt nanoparticles (NPs) stabilized by fullerenol C60(OH)12 (Pt:C60(OH)12) was successfully synthesized via liquid-phase chemical reduction. The subsequent pyrolysis of Pt:C60(OH)12 at different temperatures was conducted to afford Pt-doped carbon with different chemical compositions (Pt:C60n). X-ray absorption spectroscopy (XAS) and Infrared (IR) absorption spectroscopy and thermogravimetric measurements revealed that the thus-prepared nanocomposite consists of Pt NPs and high valent Pt-C60(OH)12 complex. One distinct feature of C60(OH)12 matrix as catalyst support is the suppression of size growth of Pt NPs during the pyrolysis up to 300 °C. Electrochemical experiments using cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were performed to find that Pt:C60300 (pyrolyzed at 300 °C) exhibited higher activity than others, that was attributed to the π-extended feature of the as-obtained carbon.  相似文献   
104.
Morphologically and dimensionally controlled growth of Ag nanocrystals has long been plagued by surfactants or capping agents that complicate downstream applications, unstable Ag salts that impaired the reproducibility, and multistep seed injection that is troublesome and time-consuming. Here, we report a one-pot electro-chemical method to fast (∼2 min) produce Ag nanoparticles from commercial bulk Ag materials in a nitric acid solution, eliminating any need for surfactants or capping agents. Their size can be easily manipulated in an unprecedentedly wide range from 35 to 660 nm. Furthermore, the Ag nanoparticles are directly grown on the Ag substrate, highly desirable for promising applications such as catalysis and plasmonics. The mechanistic studies reveal that the concentration of Ag+ in the diffusion layer nearby the surface, controlled by the magnitude and duration of voltage, is critical in governing the nanoparticle formation (<1.3 mM) and its dimensional adjustability.  相似文献   
105.
The present study investigates the synthesis and effectiveness of gold/gelatin nanoparticles (NPs) biopolymer as a carrier for methotrexate (MTX) drug. Two different shapes of gold particles, including spherical AuNPs (50 & 100 nm) and gold nanorods (AuNRs) with three different sizes (20, 50 and 100 nm length) were synthesized using the chemical reduction method. The effect of AuNPs size and shape on the entrapment efficiency (E.E), the release rate of the drug, and cellular uptake were investigated. The surfaces of both AuNPs and AuNRs were coated with a gelatin biopolymer, and the stability and property of the generated compounds were studied. Moreover, MTX as a chemotherapeutic agent was loaded on the gelatin-coated AuNPs/AuNRs complexes. The physicochemical properties of the gelatin-coated AuNPs/AuNRs complexes were studied using ultraviolet-visible (UV–Vis) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FT-IR) spectroscopy. The E.E and MTX release behavior from the complexes at pH values of 7.4 and 5.4 and temperatures of 37 and 40 °C were investigated in vitro. The cytotoxic effects of AuNPs, AuNPs-Gelatin, AuNPs-Gelatin-MTX, AuNRs, AuNRs-Gelatin, AuNRs-Gelatin-MTX and free MTX were studied. The results indicated that the E.E of AuNPs was higher than that of AuNRs. The highest release rate of the drug was related to the AuNR1-gelatin complex (pH 5.4 and temperature of 40 °C). In addition, MTX loaded AuNR2-gelatin showed the highest cytotoxic effect on the MCF-7 breast cancer cell line so that even its cell cytotoxicity was more than that of the free drug.  相似文献   
106.
Matching of symmetry at interfaces is a fundamental obstacle in molecular assembly. Virus‐like particles (VLPs) are important vaccine platforms against pathogenic threats, including Covid‐19. However, symmetry mismatch can prohibit vaccine nanoassembly. We established an approach for coupling VLPs to diverse antigen symmetries. SpyCatcher003 enabled efficient VLP conjugation and extreme thermal resilience. Many people had pre‐existing antibodies to SpyTag:SpyCatcher but less to the 003 variants. We coupled the computer‐designed VLP not only to monomers (SARS‐CoV‐2) but also to cyclic dimers (Newcastle disease, Lyme disease), trimers (influenza hemagglutinins), and tetramers (influenza neuraminidases). Even an antigen with dihedral symmetry could be displayed. For the global challenge of influenza, SpyTag‐mediated display of trimer and tetramer antigens strongly induced neutralizing antibodies. SpyCatcher003 conjugation enables nanodisplay of diverse symmetries towards generation of potent vaccines.  相似文献   
107.
The generation of highly organized amyloid fibrils is associated with a wide range of conformational pathologies, including primarily neurodegenerative diseases. Such disorders are characterized by misfolded proteins that lose their normal physiological roles and acquire toxicity. Recent findings suggest that proteostasis network impairment may be one of the causes leading to the accumulation and spread of amyloids. These observations are certainly contributing to a new focus in anti‐amyloid drug design, whose efforts are so far being centered on single‐target approaches aimed at inhibiting amyloid aggregation. Chaperones, known to maintain proteostasis, hence represent interesting targets for the development of novel therapeutics owing to their potential protective role against protein misfolding diseases. In this minireview, research on nanoparticles that can either emulate or help molecular chaperones in recognizing and/or correcting protein misfolding is discussed. The nascent concept of “nanochaperone” may indeed set future directions towards the development of cost‐effective, disease‐modifying drugs to treat several currently fatal disorders.  相似文献   
108.
Relaxation dynamics of plasmons in Au−SiO2 core-shell nanoparticles have been followed by femtosecond pump-probe technique. The effect of excitation pump energy and surrounding medium on the time constants associated with the hot electron relaxation has been elucidated. A gradual increase in the electron-phonon relaxation time with pump energy is observed and can be attributed to the higher perturbation of the electron distribution in AuNPs at higher pump energy. Variation in time constants for the electron-phonon relaxation in different solvents is rationalized on the basis of their thermal conductivities, which govern the rate of dissipation of heat of photoexcited electrons in the nanoparticles. On the other hand, phonon-phonon relaxation is found to be much less effective than electron-phonon relaxation for the dissipation of energy of the excited electron and the time constants associated with it remain unaffected by thermal conductivity of the solvent.  相似文献   
109.
Recently, concerns have been raised globally about antimicrobial resistance, the prevalence of which has increased significantly. Carbapenem-resistant Klebsiella pneumoniae (KPC) is considered one of the most common resistant bacteria, which has spread to ICUs in Saudi Arabia. This study was established to investigate the antibacterial activity of biosynthesized zinc oxide nanoparticles (ZnO-NPs) against KPC in vitro and in vivo. In this study, we used the aqueous extract of Acacia nilotica (L.) fruits to mediate the synthesis of ZnO-NPs. The nanoparticles produced were characterized by UV-vis spectroscopy, zetasizer and zeta potential analyses, X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The antimicrobial activity of ZnO-NPs against KPC was determined via the well diffusion method, and determining minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), the results showed low MIC and MBC when compared with the MIC and MBC of Imipenem and Meropenem antibiotics. The results of in vitro analysis were supported by the results upon applying ZnO-NP ointment to promote wound closure of rats, which showed better wound healing than the results with imipenem ointment. The biosynthesized ZnO-NPs showed good potential for use against bacteria due to their small size, applicability, and low toxicity to human cells.  相似文献   
110.
In order to alleviate the contradiction between injectability of the profile control agent and its profile control performance, a novel core‐shell heterogeneous structure colloidal particles (CSA) were synthesized, and the mechanism of self‐aggregation plugging was proposed. Cross‐linking inside the nanoparticles and chain‐growth polymerization via capturing acrylamide in the aqueous phase result in the formation of core‐shell heterogeneous structures as proved by TEM observation and XPS analysis. Moreover, CSA nanoparticles exhibit good hydrophilic properties, outstanding thermal stability and limited expansion capacity. Effects of different metal cations and surface group on the self‐aggregation time of CSA nanoparticles were systematically studied. Results showed that divalent cations contributed to more significant aggregation of CSA nanoparticles in comparison to monovalent cations. The increasing cations concentration and valency decreased the thickness of electric double layer, which lead to a decrease in the zeta potential. Core flooding test shows that the injection of nanoparticles which diameter is much smaller that of pore‐throats into the target reservoir can not only successfully enter the depth of porous media, but also effectively block the high permeability areas by the formation of self‐aggregation particle clusters. This study provides a new method for the equilibrium between nanoparticles injectivity and in‐depth profile control of nanoparticles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号