首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   929篇
  免费   0篇
化学   928篇
物理学   1篇
  2023年   1篇
  2020年   28篇
  2019年   84篇
  2018年   20篇
  2017年   77篇
  2016年   16篇
  2015年   18篇
  2014年   15篇
  2013年   18篇
  2012年   60篇
  2011年   54篇
  2010年   34篇
  2009年   26篇
  2008年   42篇
  2007年   37篇
  2006年   48篇
  2005年   53篇
  2004年   41篇
  2003年   38篇
  2002年   29篇
  2001年   42篇
  2000年   37篇
  1999年   24篇
  1998年   29篇
  1997年   19篇
  1996年   24篇
  1995年   15篇
排序方式: 共有929条查询结果,搜索用时 624 毫秒
151.
In most junctions built by wiring a single molecule between two electrodes, the electrons flow along only one axis: between the two anchoring groups. However, molecules can be anisotropic, and an orientation‐dependent conductance is expected. Here, we fabricated single‐molecule junctions by using the electrode potential to control the molecular orientation and access individual elements of the conductivity tensor. We measured the conductance in two directions, along the molecular plane as the benzene ring bridges two electrodes using anchoring groups (upright) and orthogonal to the molecular plane with the molecule lying flat on the substrate (planar). The perpendicular (planar) conductance is about 400 times higher than that along the molecular plane (upright). This offers a new method for designing a reversible room‐temperature single‐molecule electromechanical switch that controllably employs the electrode potential to orient the molecule in the junction in either “ON” or “OFF” conductance states.  相似文献   
152.
The first study in which stochastic simulations of a two‐component molecular machine are performed in the mass‐action regime is presented. This system is an autonomous molecular pump consisting of a photoactive axle that creates a directed flow of rings through it by exploiting light energy away from equilibrium. The investigation demonstrates that the pump can operate in two regimes, both experimentally accessible, in which light‐driven steps can be rate‐determining or not. The number of photons exploited by an individual molecular pump, as well as the precision of cycling and the overall efficiency, critically rely on the operating regime of the machine. This approach provides useful information not only to guide the chemical design of a self‐assembling molecular device with desired features, but also to elucidate the effect of the environment on its performance, thus facilitating its experimental investigation.  相似文献   
153.
Conversion of CO2 into valuable molecules is a field of intensive investigation with the aim of developing scalable technologies for making fuels using renewable energy sources. While electrochemical reduction into CO and formate are approaching industrial maturity, a current challenge is obtaining more reduced products like methanol. However, literature on the matter is scarce, and even more for the use of molecular catalysts. Here, we demonstrate that cobalt phthalocyanine, a well‐known catalyst for the electrochemical conversion of CO2 to CO, can also catalyze the reaction from CO2 or CO to methanol in aqueous electrolytes at ambient conditions of temperature and pressure. The studies identify formaldehyde as a key intermediate and an unexpected pH effect on selectivity. This paves the way for establishing a sequential process where CO2 is first converted to CO which is subsequently used as a reactant to produce methanol. Under ideal conditions, the reaction shows a global Faradaic efficiency of 19.5 % and chemical selectivity of 7.5 %.  相似文献   
154.
The dissolution of anhydrous iron bromide in a mixture of pyridine and acetonitrile, in the presence of an organic amine, results in the formation of an [Fe34] metal oxide molecule, structurally characterised by alternate layers of tetrahedral and octahedral FeIII ions connected by oxide and hydroxide ions. The outer shell of the complex is capped by a combination of pyridine molecules and bromide ions. Magnetic data, measured at temperatures as low as 0.4 K and fields up to 35 T, reveal competing antiferromagnetic exchange interactions; DFT calculations showing that the magnitudes of the coupling constants are highly dependent on both the Fe‐O‐Fe angles and Fe?O distances. The simplicity of the synthetic methodology, and the structural similarity between [Fe34], bulk iron oxides, previous FeIII–oxo cages, and polyoxometalates (POMs), hints that much larger molecular FeIII oxides can be made.  相似文献   
155.
Lamellar membranes with well‐defined 2D nanochannels show fast, selective permeation, but the underlying molecular transport mechanism is unexplored. Now, regular robust MXene Ti3C2Tx lamellar membranes are prepared, and the size and wettability of nanochannels are manipulated by chemically grafted hydrophilic (?NH2) or hydrophobic (?C6H5, ?C12H25) groups. These nanochannels have a sharp difference in mass transfer behavior. Hydrophilic nanochannels, in which polar molecules form orderly aligned aggregates along channel walls, impart ultrahigh permeance (>3000 L m?2 h?1 bar?1), which is more than three times higher than that in hydrophobic nanochannels with disordered molecular configuration. In contrast, nonpolar molecules with disordered configuration in both hydrophilic and hydrophobic nanochannels have comparable permeance. Two phenomenological transport models correlate the permeance with the mass transport mechanism of molecules that display ordered and disordered configuration.  相似文献   
156.
157.
Incorporation of small amounts of α-tocopherol (vitamin E) in blends with the cellobiose–triazole-linked atactic poly(4-methyl-1-pentene) (CB-aPMP) sugar–polyolefin conjugate can be used to exert external control over thermotropic phase behavior and provide access to non-canonical soft matter Frank–Kasper A15 and σ phases. These results establish a paradigm that can be used for the further design and development of scalable quantities of soft matter FK phases of increased structural complexity and functional capability.  相似文献   
158.
159.
Although highly useful in supramolecular chemistry, pillararenes lack a fluorophore in their skeleton. Here we present BowtieArene, a novel fluorescent dual macrocycle, featuring a central tetraphenylethylene-derived fluorophore and two pillar-like, pentagon-shaped cavities which are comparable to pillar[5]arene. This concisely prepared, figure-of-eight molecule exhibits vapor absorption and host–guest capabilities, as well as intriguing switchable fluorescence. The fluorochromism of BowtieArene can be triggered by multiple external stimuli including solvent, vapor, and mechanical force, with excellent reversibility and stability. Experimental and theoretical evidence indicate that the fluorochromism should be closely related to molecular packing.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号