首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12698篇
  免费   1038篇
  国内免费   593篇
化学   13586篇
晶体学   44篇
力学   125篇
综合类   9篇
数学   19篇
物理学   546篇
  2024年   33篇
  2023年   84篇
  2022年   184篇
  2021年   217篇
  2020年   427篇
  2019年   376篇
  2018年   309篇
  2017年   513篇
  2016年   751篇
  2015年   630篇
  2014年   636篇
  2013年   1037篇
  2012年   880篇
  2011年   831篇
  2010年   779篇
  2009年   843篇
  2008年   800篇
  2007年   796篇
  2006年   680篇
  2005年   613篇
  2004年   651篇
  2003年   473篇
  2002年   342篇
  2001年   191篇
  2000年   121篇
  1999年   142篇
  1998年   125篇
  1997年   132篇
  1996年   113篇
  1995年   99篇
  1994年   104篇
  1993年   105篇
  1992年   108篇
  1991年   46篇
  1990年   25篇
  1989年   23篇
  1988年   20篇
  1987年   15篇
  1986年   17篇
  1985年   10篇
  1984年   12篇
  1983年   5篇
  1982年   11篇
  1981年   7篇
  1979年   4篇
  1978年   1篇
  1977年   2篇
  1975年   2篇
  1974年   2篇
  1972年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Amphiphilic tris(2,2′‐bipyridine)ruthenium‐cored star‐shaped polymers consisting of one polystyrene block and two poly(N‐isopropylacrylamide) blocks were prepared by the “arm‐first” method in which RAFT polymerization and nonconvalent ligand–metal complexation were employed. The prepared amphiphilic star‐shaped metallopolymers are able to form micelles in water. The size and distribution of the micelles were studied by dynamic light scattering and transmission electron microscopy techniques. Preliminary studies indicate that the polymer concentration and the hydrophilic poly(N‐isopropylacrylamide) block length can affect the morphologies of the formed metal‐interfaced core–shell micelles in water. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4204–4210, 2007  相似文献   
12.
Rhythmic growth of ring‐banded spherulites in blends of liquid crystalline methoxy‐poly(aryl ether ketone) (M‐PAEK) and poly(aryl ether ether ketone) (PEEK) has been investigated by means of differential scanning calorimetry (DSC), polarized light microscopy (PLM), and scanning electron microscopy (SEM) techniques. The measurements reveal that the formation of the rhythmically grown ring‐banded spherulites in the M‐PAEK/PEEK blends is strongly dependent on the blend composition. In the M‐PAEK‐rich blends, upon cooling, an unusual ring‐banded spherulite is formed, which is ascribed to structural discontinuity caused by a rhythmic radial growth. For the 50:50 M‐PAEK/PEEK blend, ring‐banded spherulites and individual PEEK spherulites coexist in the system. In the blends with PEEK as the predominant component, M‐PAEK is rejected into the boundary of PEEK spherulites. The cooling rate and crystallization temperature have great effect on the phase behavior, especially the ring‐banded spherulite formation in the blends. In addition, the effects of M‐PAEK phase transition rate and phase separation rate on banded spherulite formation is discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3011–3024, 2007  相似文献   
13.
A soluble cyano‐substituted poly[(1,3‐phenylene vinylene)‐alt‐(1,4‐phenylene vinylene)] derivative ( 9 ) was synthesized and characterized. Comparison between 9 and its model compound ( 10 ) showed that the chromophore in 9 remained to be well defined as a result of a π‐conjugation interruption at adjacent m‐phenylene units. The attachment of a cyano substituent only at the β position of the vinylene allowed the maximum electronic impact of the cyano group on the optical properties of the poly(p‐phenylene vinylene) material. At a low temperature (?108 or ?198 °C), the vibronic structures of 9 and 10 were partially resolved. The absorption and emission spectra of a film of 9 were less temperature‐dependent than those of a film of 10 , indicating that the former had a lower tendency to aggregate. A light‐emitting diode (LED) based on 9 emitted yellow light (λmax ≈ 578 nm) with an external quantum efficiency of 0.03%. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3149–3158, 2003  相似文献   
14.
A series of sulfonated poly(aryl ether ketone)s (SPAEKs) were prepared by aromatic nucleophilic polycondensation of 2,6‐dihydroxynaphthalene with 5,5′‐carbonyl‐bis(2‐fluorobenzenesulfonate) and 4,4′‐difluorobenzophenone. The structure and degree of sulfonation (DS) of the SPAEKs were characterized using 1H NMR spectroscopy. The experimentally observed DS values were close to the expected values derived from the starting material ratios. The thermal stabilities of the SPAEKs were characterized by thermogravimetric analysis, which showed that in acid and sodium salt forms they were thermally stable in air up to about 240 and 380 °C, respectively. Transparent membranes cast from the directly polymerized SPAEKs exhibited good mechanical properties in both dry and hydrated states. The dependence of water uptake and of membrane swelling on the DS at different temperatures was studied. SPAEK membranes with a DS from 0.72 to 1.60 maintained adequate mechanical properties after immersion in water at 80 °C for 24 h. The proton conductivity of SPAEK membranes with different degrees of sulfonation was measured as a function of temperature. The proton conductivity of the SPAEK films increased with increased DS, and the highest room temperature conductivity (4.2 × 10?2 S/cm) was recorded for a SPAEK membrane with a DS of 1.60, which further increased to 1.1 × 10?1 S/cm at 80 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2866–2876, 2004  相似文献   
15.
By combining frontal polymerization and radical‐induced cationic polymerization, it was possible to cure thick samples of an epoxy monomer bleached by UV light. The effect of the relative amounts of cationic photoinitiator and radical initiator was thoroughly investigated and was related to the front's velocity and its maximum temperature. The materials obtained were characterized by quantitative conversion also in the deeper layers, not reached by UV light. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2066–2072, 2004  相似文献   
16.
The synthesis and structural characterization of a series of novel, fluorinated poly(phthalazinone ether)s containing perfluorophenylene moieties are described. The monomers, 4‐(4′‐hydroxyaryl)phthalazin‐1(2H)‐ones ( 2a – 2d ), were conveniently and efficiently synthesized from phenols and phthalic anhydride in two steps via 2‐(4′‐hydroxybenzoyl)benzoic acids, which were first obtained by the Friedel–Crafts reaction in good yields and with high stereoselectivity and were then converted into 2a – 2d by fusion with hydrazine. All the polymers were prepared by nucleophilic aromatic substitution (SNAr) polycondensation between the compounds perfluorobiphenyl and 4‐(4′‐hydroxyaryl)phthalazin‐1(2H)‐ones ( 2a ‐ 2d ). The resulting fluorinated polymers were readily soluble in common organic solvents (e.g., CHCl3, tetrahydrofuran, dimethylformamide, dimethyl sulfoxide, N‐methylpyrrolidone, etc.) at room temperature. Their weight‐average molecular weights and the polydispersities ranged from (7.96–18.25) × 103 to 1.31–2.71, respectively. Their glass‐transition temperatures varied from 213 to 263 °C. They were all stable up to 390 °C both in air and in argon. The 5% weight‐loss temperatures of these polymers in air and argon ranged from 393–487 to 437–509 °C, respectively. Wide‐angle X‐ray diffraction studies indicated they were all amorphous and could be attributed to the presence of kink nonplanar moiety, phenyl phthalazinone along the polymer backbone. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 925–932, 2004  相似文献   
17.
Poly{bis(4,4′‐tert‐butyl‐2,2′‐bipyridine)–(2,2′‐bipyridine‐5,5′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3a ), poly{bis(4,4′‐tert‐butyl‐2,2′‐bipyridine)–(2,2′‐bipyridine‐4,4′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3b ), and poly{bis(2,2′‐bipyridine)–(2,2′‐bipyridine‐5,5′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3c ) were synthesized by the Suzuki coupling reaction. The alternating structure of the copolymers was confirmed by 1H and 13C NMR and elemental analysis. The polymers showed, by ultraviolet–visible, the π–π* absorption of the polymer backbone (320–380 nm) and at a lower energy attributed to the d–π* metal‐to‐ligand charge‐transfer absorption (450 nm for linear 3a and 480 nm for angular 3b ). The polymers were characterized by a monomodal molecular weight distribution. The degree of polymerization was approximately 8 for polymer 3b and 28 for polymer 3d . © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2911–2919, 2004  相似文献   
18.
Following our continued interest in the production of bioerodible and biodegradable functional polymers for biomedical applications, we synthesized and characterized new unsaturated polyesters. The presence of functional groups in the polymer backbone provided sites for chemical modification, and through a variation in the structure, the physical properties, such as the hydrophilicity and solubility, could be affected. With 1,1-di-n-butyl-stanna-2,7-dioxacyclo-4-heptene as the initiator in the ring-opening polymerization of polyesters, a new set of functionalized polyesters was created. The polymerization of ϵ-caprolactone resulted in poly(ϵ-caprolactone) with a double bond incorporated into the structure. The polymers were obtained in a controlled manner with low molecular dispersities. The double bond was previously incorporated into L -lactide polymers, and the two reactions were compared in this study. The conversion of ϵ-caprolactone, with a degree of polymerization of 50, was completed within 140 min, whereas for L -lactide, only a 45% conversion took place in the same period of time. The dispersities were somewhat higher with ϵ-caprolactone because of the higher reaction rate and, therefore, lower selectivity. The incorporated CC double bond in the polyesters provided a variety of opportunities for further modifications. In this case, the double bond of the L -lactide macromonomers was oxidized into epoxides. Epoxidation was carried out with m-chloroperoxybenzoic acid as a chemical reagent. The conversion of the double bonds into epoxides was completed, and the obtained yields were good (>95%). As a result of the mild reaction conditions, the epoxidation of the double bond was carried out quantitatively without any side reactions. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 444–452, 2004  相似文献   
19.
7‐Octenyldimethylphenylsilane was copolymerized with ethylene via Et(Ind)2ZrCl2 methylaluminoxane catalyst system without loss of catalyst activity or decrease in molar mass. The comonomer contents in the polymer samples were at a level of 0.15–1.0 mol % and the reactive phenylsilane groups were posttreated to different alcoxy‐ and halosilane groups, for example, Si? F, Si? Cl, Si? OCH3, and Si? OCH2CH3. The posttreatment reactions had no major effect on the molar masses or on the thermal properties (measured with differential scanning calorimetry) of the copolymers. The reaction pathways were nearly independent of the comonomer contents and the reactions reached 70–100% conversions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1461–1467, 2004  相似文献   
20.
A series of five tetrablock quarterpolymers of styrene, isoprene, dimethylsiloxane, and 2-vinylpyridine with molecular weights varying from 117 × 103 to 177 × 103 and having different compositions were synthesized. The synthesis was based on recent advances in the controlled high-vacuum anionic polymerization of hexamethylcyclotrisiloxane and on the selective linking of poly(dimethylsiloxane)lithium with the chlorosilane group of the heterofunctional linking agent chloromethylphenylethylene dimethylchlorosilane. Combined characterization results by size exclusion chromatography, membrane osmometry, and NMR spectroscopy suggested that the synthesized multiblock multicomponent polymers had a high degree of structural and compositional homogeneity. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 514–519, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号