首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   1篇
  国内免费   15篇
化学   67篇
物理学   1篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2017年   2篇
  2016年   1篇
  2014年   2篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2009年   8篇
  2008年   1篇
  2007年   5篇
  2006年   6篇
  2005年   5篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2000年   5篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
排序方式: 共有68条查询结果,搜索用时 15 毫秒
51.
基于互穿网络结构的pH/温度双重刺激响应性微凝胶的研究   总被引:1,自引:0,他引:1  
室温下采用氧化-还原引发体系,以低交联密度的聚(N-异丙基丙烯酰胺)(PNIPAM)微凝胶为种子,通过种子乳液聚合法合成由PNIPAM和聚丙烯酸(PAA)形成的具有互穿聚合物网络结构的微凝胶.傅立叶变换红外光谱分析结果表明微凝胶由PNIPAM和PAA两种聚合物组成,透射电镜表征结果证实微凝胶中PNIPAM和PAA两种聚合物形成了互穿网络结构.用动态激光光散射测试不同温度或pH值水介质中微凝胶的粒径,结果发现微凝胶具有良好的pH/温度双重刺激响应性.在水介质pH值大于5.5的情况下,PAA组分对微凝胶的体积相转变温度没有影响;而在水介质pH值为4.0的情况下,由于PAA与PNIPAM之间的氢键作用,微凝胶的体积相转变温度稍微降低.微凝胶中PAA组分含量越高,其pH刺激响应性越显著.  相似文献   
52.
Polyampholyte microgel particles, containing both methacrylic acid and 2-(dimethylamino) ethyl methacrylate (a weak base), in a mainly N-isopropyl acrylamide network, have been prepared by free-radical dispersion polymerisation. The swelling properties of the particles have been shown to be pH and temperature dependent and to exhibit a minimum in size at the iso-electric point. The uptake and release of cetylpyridinium chloride and Triton X-100, into and from, the polyampholyte microgel particles have been investigated as a function of pH. The absorbed amounts at different pH values have been related to various specific interactions between the surfactant and the microgel network.  相似文献   
53.
This brief review aims at providing some illustrative examples on the interaction between microgels and biological macromolecules, with special focus on peptides and proteins, as well as current applications of such systems in drug delivery. In doing so, novel insights on factors affecting peptide/protein incorporation to, distribution within, and release from, sparsely cross-linked microgels are addressed, including effects of network charge and cross-linking density, as well as peptide/protein length/size, charge (distribution), and hydrophobicity. Effects of ambient conditions are also illustrated, with special focus on pH and ionic strength. Notably, factors precluding the application of microgel systems in biomacromolecular drug delivery, e.g., shell formation and incomplete drug release, are discussed, together with challenges and opportunities of these effects in the application of biomacromolecule/microgel systems in drug delivery.  相似文献   
54.
“核-壳”结构微交联聚苯乙烯微粒的合成与表征   总被引:1,自引:0,他引:1  
本文用复合乳液聚合方法合成了粒径70—160nm的窄分散、微交联聚苯乙烯微粒,透射电子显微镜观测表明该微粒具有核-壳结构。用薄层色谱、透射电镜结合凝胶色谱、粘度等方法对该微粒进行了结构表征并探讨了影响微粒结构的主要因素。实验结果表明:双烯A用量为苯乙烯单体Ⅰ重量的1—4%,第一阶段聚合两小时后,滴加苯乙烯单体Ⅱ进行壳层聚合,合成的微粒含8.0—15.0%的线性聚苯乙烯,壳层主要由与核连接的聚苯乙烯链构成。  相似文献   
55.
借助于超声波振荡分散法,通过苯乙烯-二乙烯基苯-对氯甲基苯乙烯三元共聚合反应合成了可溶性聚苯乙烯微凝胶,用二乙基二硫代氨基甲酸钠(铜试剂)取代其中的氯原子得到具有Iniferter功能的多官能度自由基活性微凝胶,该活性微凝胶引发苯乙烯聚合得到星型高分子,星型高分子中仍有Iniferter功能的基团.  相似文献   
56.
Osmotic de-swelling of polystyrene microgel particles   总被引:1,自引:0,他引:1  
  相似文献   
57.
聚(N-异丙基丙烯酰胺)水凝胶微球体积相变的研究   总被引:4,自引:0,他引:4  
高均  吴奇 《高分子学报》1997,(3):324-330
窄分散的聚(N 异丙基丙烯酰胺)水凝胶微球用乳液聚合方法制备,并用动态和静态光散射对其体积相变进行了研究.与水中聚(N 异丙基丙烯酰胺)线性单链比较,水中凝胶微球的体积相变温度较高,对温度的响应比较平缓.相变是连续的,有别于大块凝胶非连续的体积变化.在体积相变过程中,凝胶微球始终是密度均一的热力学稳定球体.从相变过程网络密度的变化可以确定,绝大部分的水在收缩过程被排了出来,但在紧缩的凝胶微球中仍含有约70%的水.  相似文献   
58.
通过γ 射线辐照技术 ,在稀水溶液中实现了N ,N′ 亚甲基双丙烯酰胺 (Bis)与 4 乙烯基吡啶 (4 VP)的无皂乳液共聚 ,得到平均流体力学半径 (Rh)为 5 6~ 15 2nm的一系列微凝胶 ,并通过红外光谱、热分析、透射电镜进行了表征 .通过测定Rh、吸光度、凝胶比 ,研究了与Bis共聚的单体及比例、剂量和剂量率对微凝胶合成的影响 .结果表明 ,微凝胶的大小可以通过吸收剂量、单体相对含量的改变来进行控制 .最后 ,对微凝胶的形成机理进行了初步探讨 .  相似文献   
59.
In the UV-Vis spectra of pure light-scattering systems,there is an exponential relationship between absorbance and wavelength(A=Kλ~(-n)).Here,the exponent n is named as flocculation-coagulation parameter.In the present paper,the effects of different additives on the stability of poly(N,N'-methylenebisacrylamide-co-4-vinylpyridine)(poly(Bis-co-4-VP)) microgel dispersion were studied in detail via this parameter.The results showed that the stability of the dispersion mainly comes from the ionization of pyridine groups,making the microgel positively charged on its surface.This was confirmed by the measurement of Zeta potential and the result of conductometric titration.The result of fluorescence analysis indicated that the hydrophobicity in the microgels is enhanced with the increase in total 4-VP unit content.  相似文献   
60.
Thermoresponsive colloidal microgels were prepared by polymerisation of N-isopropylacrylamide (NIPAM) with varying concentration of a cross-linking monomer, N,N-methylenebisacrylamide (MBA), in water with either 0.4 or 6.7 mM concentration of an anionic surfactant, sodium dodecylsulphate (SDS). Volume phase transitions of the prepared microgels were studied in D2O by 1H-NMR spectroscopy including the measurements of spin–lattice (T1) and spin–spin (T2) relaxation times for the protons of poly(N-isopropylacrylamide) (PNIPAM) at temperature range 22–50 °C. In addition, microcalorimetry, turbidometry, dynamic light scattering and electrophoretic mobility measurements were used to characterise the aqueous microgels. The results from the different characterisation methods indicated that PNIPAM microgels prepared in 6.7 mM SDS concentration are structurally different compared to their correspondences prepared in 0.4 mM concentration. Increasing MBA concentration in the microgel synthesis appears to increase the structural heterogeneity in both cases of SDS concentration. PNIPAM structures with significantly higher molecular mobilities at temperatures above 35 °C were observed in the microgels prepared in 0.4 mM SDS concentration, as indicated by the 1H NMR relaxation times of different PNIPAM protons. We conclude that the high mobilities measured with NMR at elevated temperatures and also the clearly negative values of zeta potential are in connection to a fairly mobile surface layer with polyelectrolyte nature and a consequent high local lower critical solution temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号