全文获取类型
收费全文 | 560篇 |
免费 | 20篇 |
国内免费 | 212篇 |
专业分类
化学 | 600篇 |
力学 | 10篇 |
综合类 | 2篇 |
数学 | 5篇 |
物理学 | 175篇 |
出版年
2023年 | 21篇 |
2022年 | 18篇 |
2021年 | 26篇 |
2020年 | 16篇 |
2019年 | 14篇 |
2018年 | 13篇 |
2017年 | 11篇 |
2016年 | 18篇 |
2015年 | 30篇 |
2014年 | 20篇 |
2013年 | 23篇 |
2012年 | 17篇 |
2011年 | 33篇 |
2010年 | 38篇 |
2009年 | 45篇 |
2008年 | 37篇 |
2007年 | 43篇 |
2006年 | 26篇 |
2005年 | 30篇 |
2004年 | 32篇 |
2003年 | 26篇 |
2002年 | 28篇 |
2001年 | 27篇 |
2000年 | 25篇 |
1999年 | 18篇 |
1998年 | 38篇 |
1997年 | 36篇 |
1996年 | 28篇 |
1995年 | 16篇 |
1994年 | 8篇 |
1993年 | 14篇 |
1992年 | 2篇 |
1990年 | 2篇 |
1989年 | 1篇 |
1988年 | 3篇 |
1986年 | 1篇 |
1985年 | 3篇 |
1983年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1973年 | 2篇 |
排序方式: 共有792条查询结果,搜索用时 15 毫秒
141.
甲烷具有价格低廉且储量丰富的优点,因此将甲烷转化为合成气(一种H2:CO为2的混合物),从而进一步合成有价值的化学品和液体燃料引起了人们的极大关注.化学链甲烷部分氧化(CLPOM)技术能避免甲烷与空气直接接触而引起爆炸的危险,可以降低后续对合成气与氮气分离操作所带来的费用,因此日益受到关注.CLOPM过程主要分为两步:第一步,CH4被载氧体所携带的氧部分氧化,载氧体被还原;第二步,利用氧化剂(例如空气)将被还原的载氧体再氧化恢复.因此,载氧体在CLOPM过程中起到至关重要的作用.载氧体的选择主要存在两个问题:(1)甲烷被活化所产生含碳产物的能力与晶格氧的给氧能力不匹配所带来的严重碳沉积;(2)金属离子间扩散速率不匹配而造成载氧体在氧化还原过程中结构的不可逆变化.基于上述两个问题,本文设计了FeWOx/SiO2载氧体用于CLPOM.与未改性的WO3/SiO2载氧体相比,甲烷的转化率和合成气的收率都有显著提高.FeWOx/SiO2在900℃、1 atm反应条件下表现出62%的甲烷转化率、93%的CO气相选择性、94%的H2选择性和2.4的H2/CO比值,同时在50个循环中表现出优异的催化活性和稳定性.本工作利用CH4脉冲反应研究了FeWOx/SiO2的甲烷表面反应过程;采用CH4-TPR和H2-TPR相结合探究了甲烷活化速率与晶格氧扩散速率之间的关系;通过XPS和XRD对FeWOx/SiO2在氧化还原过程中的结构稳定性进行了探讨.综合上述实验结果,对FeWOx/SiO2应用于CLPOM的反应机理进行了阐述.H2-TPR结果表明,在FeWOx/SiO2中,相较于Fe2O3/SiO2,Fe-O的活性受到抑制,使其更倾向于与甲烷发生部分氧化反应;相较于WO3/SiO2,W-O的活性得到明显提升,因此更多的晶格氧可以参与到部分氧化反应中来氧化积碳,从而使合成气收率大幅度提升.从CH4-TPR结果可以看出,对于FeWOx/SiO2,CO与H2的生成温度最接近,意味着晶格氧的传输速率较快并且能够与甲烷活化产生含碳中间物种的速率相匹配,将其及时氧化生成CO,避免由于积碳造成的催化剂失活.结合XPS和XRD结果可以得出,在甲烷还原过程中,FeWOx经历一步还原形成Fe-W合金,由于其间存在强相互作用,因而抑制了还原过程中催化剂相分离现象的发生.同时,根据铁钨离子在空气条件下扩散速率的公式计算可以得出,其相近的离子氧化速率也保证了在氧化过程中催化剂结构的稳定性.本工作为进一步构建用于甲烷化学链部分氧化制合成气的复合金属氧化物载氧体提供了研究思路. 相似文献
142.
钯基催化剂是甲烷氧化活最具活性的催化剂.在宏观和纳米尺度上,它们的组成、结构和形态的调整可以显著改变其催化行为和稳定性,对催化剂的整体性能有很大的影响.在已经应用的几种载体和促进剂组合中, Pd/CeO2由于其活性和耐用性以及Pd/Pd O载体之间较强的相互作用而引起了人们的极大关注.这使得人们可在纳米尺度上创建特定的结构,从而对甲烷活化特性产生重大的影响.本文综述了该领域的最新发现,特别是设想如何在纳米尺度上尽可能控制Pd-CeO2相互作用,从而有助于设计更强劲的甲烷氧化催化剂. 相似文献
143.
DaXinSHI YaQingFENG ShunHeZHONG 《中国化学快报》2005,16(5):685-687
Photoinduced synthesis of CO2 and CH4 was investigated using a batch reaction system on several photoactive materials supported on silicon dioxide. Single semiconductor showed higher selectivity to C1 compounds. The production of C2-C3 oxygenates took place preferentially on composite semiconductor photocatalysts. In particular, it was found that acetone was the primary product over Cu/CdS-TiO2/SiO2. 相似文献
144.
高温下,甲烷在Mo/HZSM-5分子筛上可直接生成苯[1].虽然低温下甲烷能被Mo/HZSM-5催化剂表面的—OH所活化[2],但对甲烷在高温下的活化过程知之甚少,然而这却是很重要的.我们采用原位红外光谱技术,研究了甲烷在高温下Mo/HZSM-5催化... 相似文献
145.
大气压旋转螺旋状电极辉光放电等离子体催化甲烷偶联 总被引:2,自引:0,他引:2
采用新研制的具有旋转螺旋状电极的大气压辉光放电等离子体反应器催化甲烷偶联制碳二烃. 实验采用铜电极和不锈钢电极分别考察了输入电场峰值电压和甲烷、氢气进料流量等参数对甲烷转化率和碳二烃收率、选择性的影响. 在长时间连续反应无明显积碳的情况下, 最佳试验结果是电极材料为金属铜, 进料流量为60 mL•min-1, V(CH4 )/V(H2)=1的条件下, 输入电场峰值电压为2.3 kV时, 甲烷转化率为70.64%, 碳二烃单程收率及其选择性分别为69.85%和 99.14%. 相似文献
146.
147.
以柠檬酸法制备的Fe MgO、Co MgO和Ni MgO为催化剂 ,CH4 为碳源气 ,H2 为还原气 ,在 873、973和 10 73K制备出碳纳米管 ,通过TEM和拉曼光谱表征 ,讨论了催化剂、制备温度、反应时间等因素对碳纳米管形貌、产率和内部结构的影响 .结果表明 :不同的催化剂在相同的温度下制备的碳纳米管的形态和内部结构有很大的差异 .其中Fe MgO催化剂制备的碳纳米管管径粗 ,且大小不均匀 ,而Ni MgO催化剂制备的碳纳米管管径较细、较均匀 .碳纳米管的产率随着裂解温度的变化而改变 .Fe MgO催化剂制备碳纳米管的产率随制备温度的升高而提高 ,而Ni MgO催化剂制备碳纳米管的产率随制备温度的升高而降低 .Fe MgO催化剂制备碳纳米管 ,在10 73K甚至更高的制备温度才能达到其最高产率 .Co MgO催化剂制备碳纳米管的产率在 973K左右产率较高 ,而用Ni MgO催化剂制备碳纳米管 ,则在 873K甚至更低的制备温度就能达到最高产率 .反应时间与碳纳米管的产率不成正比 ,有一最佳反应时间 ,如Ni MgO催化剂的最佳反应时间为 2h . 相似文献
148.
O.M. Lyulin I. Morino R. Kumazawa 《Journal of Quantitative Spectroscopy & Radiative Transfer》2011,112(3):531-539
The absorption spectra of methane at different path lengths and different pressures for three temperatures 180, 240 and 296 K have been recorded in the 5556-6166 cm−1 region using the Bruker IFS 120 HR and 125 HR high-resolution Fourier transform spectrometers. The multispectrum fitting procedure has been applied to these spectra to recover the spectral line parameters. The main goal of this procedure was the determination of self-broadening and self-pressure-induced shift coefficients and the exponents of their temperature dependences. These parameters have been derived for 406 assigned lines with good values of the signal to noise ratio. The rotational dependence of these parameters is discussed. 相似文献
149.
Methane gas (CH4) is a chemical compound comprising a carbon atom surrounded by four hydrogen atoms, and carbon nanotubes have been proposed as possible molecular containers for the storage of such gases. In this paper, we investigate the interaction energy between a CH4 molecule and a carbon nanotube using two different models for the CH4 molecule, the first discrete and the second continuous. In the first model, we consider the total interaction as the sum of the individual interactions between each atom of the molecule and the nanotube. We first determine the interaction energy by assuming that the carbon atom and one of the hydrogen atoms lie on the axis of the tube with the other three hydrogen atoms offset from the axis. Symmetry is assumed with regard to the arrangement of the three hydrogen atoms surrounding the carbon atom on the axis. We then rotate the atomic position into 100 discrete orientations and determine the average interaction energy from all orientations. In the second model, we approximate the CH4 molecule by assuming that the four hydrogen atoms are smeared over a spherical surface of a certain radius with the carbon atom located at the center of the sphere. The total interaction energy between the CH4 molecule and the carbon nanotube for this model is calculated as the sum of the individual interaction energies between both the carbon atom and the spherical surface and the carbon nanotube. These models are analyzed to determine the dimensions of the particular nanotubes which will readily suck-up CH4 molecules. Our results determine the minimum and maximum interaction energies required for CH4 encapsulation in different tube sizes, and establish the second model of the CH4 molecule as a simple and elegant model which might be exploited for other problems. 相似文献
150.
This paper presents results obtained from the application of a first-order conditional moment closure approach to the modelling of two methane flames of differing geometries. Predictions are based upon a second-moment turbulence and scalar-flux closure, and supplemented with full and reduced chemical kinetic mechanisms, ranging from a simple 12-step to a complex 1207-step mechanism. Alongside analysis of the full kinetic schemes' performance, is an appraisal of the behaviour of their derivatives obtained using mechanism-reduction techniques. The study was undertaken to analyse the practicality of incorporating kinetic models of varying complexity into calculations of turbulent non-premixed flames, and to make comparison of their performance. Despite extensive studies of the predictive ability of such schemes under laminar flame conditions, systematic evaluations have not been performed for turbulent reacting flows. This paper reflects upon the impact that selection of chemical kinetics has upon subsequent calculations and concludes that, although application of reduced schemes is more than adequate to reproduce experimental data, selection of the parent mechanism is of paramount importance to the prediction of minor species. Although widely used schemes are well documented and validated, their performances vary considerably. Thus, careful consideration must be made to their application and origins during the evaluation of combustion models. 相似文献