首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   602篇
  免费   17篇
  国内免费   54篇
化学   223篇
晶体学   29篇
力学   80篇
综合类   1篇
数学   2篇
物理学   338篇
  2024年   1篇
  2023年   6篇
  2022年   3篇
  2021年   13篇
  2020年   13篇
  2019年   8篇
  2018年   9篇
  2017年   11篇
  2016年   17篇
  2015年   19篇
  2014年   24篇
  2013年   26篇
  2012年   28篇
  2011年   64篇
  2010年   46篇
  2009年   51篇
  2008年   41篇
  2007年   43篇
  2006年   49篇
  2005年   24篇
  2004年   44篇
  2003年   33篇
  2002年   14篇
  2001年   9篇
  2000年   4篇
  1999年   13篇
  1998年   4篇
  1997年   11篇
  1996年   10篇
  1995年   10篇
  1994年   3篇
  1993年   4篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有673条查询结果,搜索用时 15 毫秒
21.
Summary Electrography and paper chromatography were combined to analyse rapidly metallic alloys in an almost non destructive technique. Using anodic dissolution the sample is applied on the start point of the chromatographic paper. Known ketones-HCl-water mixtures are usually used as solvents to analyse electrospots of different alloys and metal coatings and a separate electrospottest is recommended for Cr. Results of qualitative analysis of some steels, Cu–Ni, and Pb alloys are presented.  相似文献   
22.
The factors influencing the electrochemical behaviour of a supercapacitor have been partly examined in this work. The effects of so-called intrinsic parameters, i.e. exchange current density, unit cell length and double layer (DL) capacitance; as well as the so-called application parameters, i.e. cell current, on the cell potential discharge time have been considered. The contributions of each type of capacitors, DL capacitor and faradaic supercapacitor under various states of operation and material have been analyzed, and the competing (compensating) effects of the two types of capacitors as regards to the discharge and power characteristics manifested by current–potential and energy–power (Ragone plots) are elucidated.  相似文献   
23.
Sc2Ni2In was prepared by a reaction of the elemental components in an are furnace and subsequent annealing at 1070 K. Sc2Ni2In is a Pauli paramagnet and a poor metallic conductor with a specific resistivity of 224 mΩcm at room temperature. Its crystal structure was refined from X-ray powder data: P4/mbm, a = 716.79(1) pm, c = 333.154(8) pm, Z = 2, Rwp = 0.040, and RB(I) = 0.026. Sc2Ni2In crystallizes with a ternary ordered version of the U3Si2-type structure. The nickel and indium atoms occupy [NiSc6] trigonal prisms and [InSc8] square prisms, respectively. These structural fragments are derived from the AlB2 and CsCl-type structures. Semi-empirical band structure calculations reveal Sc2Ni2In to be a nickelide, and the strongest bonding interactions are found for the Sc? Ni contacts, followed by Sc? In and Ni? In. A rigidband model suggests the existence of the isotypic phase Sc2Ni2Sb.  相似文献   
24.
Increased concern over the risk resorcinol (RS) pose to ecology and humans, led to its position in European Union Category 1 list of endocrine disruptors. Legal measures restricted RS utilization and hence crucial to monitor its levels in the environment. Herein we report development of highly efficient and economically viable electrochemical sensor for quantitative determination of RS based on 77Maghemite/MultiWall Carbon Nanotube (M/MWCNT) modified carbon paste electrode. M/MWCNT was synthesized via strategic IR irradiation for the first time, a promising approach to overcome other complicated chemical routes. Powder X‐ray diffraction (PXRD), Transmission electron microscopy (TEM), Field emission scanning electron microscopy (FESEM) and Energy dispersive X‐ray (EDX) were used for characterization. Using Differential Pulse Voltammetry (DPV), we report the lowest detection limit at 0.02 μM. The potential application of the sensor was accomplished as a result of excellent recoveries made from real samples fortified with RS. Results indicated the proficiency of the sensor reliable for rapid, onsite monitoring of RS water contamination and in biological matrices.  相似文献   
25.
《Electrophoresis》2017,38(13-14):1661-1668
The methodological developments and applications of CE related to studying biotransformations of metal‐based nanoscale particles of impending medicinal use are overviewed. This is an update to a previous review article (Aleksenko, S. S., Shmykov, A. Y., Oszwałdowski, S., Timerbaev, A. R., Metallomics 2012, 4 , 1141–1148) and it covers the research papers published within the last five years. As was anticipated in that review, CE can now be seen as a customary technique in the analysis of biomolecular interactions that exert an impact on the mechanism of action of nanoparticles, comprising metabolism, delivery, cell processing, and targeting. Different ways by which the CE method is applied for such monitoring, including conjugation mode, sample preparation, separation, and detection, are critically assessed. Special emphasis is put on examinations using inductively coupled plasma MS detection recent advent of which to the area made CE a versatile speciation tool for biomedical studies of nanomaterials containing metals.  相似文献   
26.
Abstract

Interactions of HgX2 (X = Cl, Br, I, SCN, CN, NCO), SbCl3, TeCl4, and PhTeCl3 with Ph3Sn-O-SiPh3 at room temperature have been found to proceed with the simultaneous cleavage of Sn-O and Si-O bonds, invariably yielding Ph2SnO, Ph3SiX, and the corresponding organo-mercury, -antimony, and -tellurium derivatives. The course of the reactions suggests the instability of the Sn-O-M (M = Hg, Sb, Te) system.

GRAPHICAL ABSTRACT   相似文献   
27.
《Comptes Rendus Chimie》2014,17(7-8):775-784
Four types of SBA-15 were prepared with different times and temperatures of treatment in order to obtain a range of micropore sizes. CO oxidation was used as a probe reaction in order to evaluate the nature of the active species when SBA-15s were doped with ca 10% Ag deposited from an AgNO3 solution and calcined or reduced at 350 °C. The texture (TEM, nitrogen physisorption), structure (XRD) and reducibility (TPR) of the various catalysts (Ag/SBA-15) were studied and compared to those of a catalyst prepared by deposition of silver on fumed silica as a reference. These catalysts differ initially by the nature of silica and by pore sizes. In CO oxidation, pre-reduced catalysts are more active than pre-oxidised ones. This has to do with two phenomena, i.e. sintering, which produces large inactive silver particles, and formation of active silver species in the form of small Ag2O particles.  相似文献   
28.
Due to their physical, chemical, optical, and mechanical properties, metallic nanoparticles (MNPs) are increasingly being used, with an emphasis on silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs). In recent years, green synthesis has gained prominence for exploring the use of naturally available biological sources for the obtention of metallic nanoparticles. Among these, algae and plants stand out due to the presence of polysaccharides, proteins, polyphenols, and vitamins (among others) in their composition, which can act in the reduction and stabilisation of MNPs, and these biogenic materials have been characterised mainly by spectrometric and microscopic techniques. In addition, due to the numerous advantages of nanoparticles (NPs) synthetize from biogenic source, such as their simplicity and cost benefits, they have been used in the development of sensors applied in the determination of contaminants present in environmental samples and in the catalytic reduction of organic and inorganic contaminants. Therefore, this review describes the synthesis, mechanisms, characterization, and environmental analytical applications of NPs obtained by biogenic synthesis as well as the perspectives and challenges of these NPs.  相似文献   
29.
《中国化学快报》2021,32(11):3579-3583
Surface oxidized iron-nickel nanorods coupling with reduced graphene architectures (FeNi-O-rGA) are successfully constructed via hydrothermal, freeze-drying, and thermal activation approaches. The hierarchical structure can provide lots of pathways for fast ion diffusion and charge transfer, and expose abundant catalytic sites. Meanwhile, the activity of FeNi-O-rGA is boosted by the optimized metal-oxygen bond strength in FeNi3 alloys. Partial oxidized FeNi nanorods are strongly coupled with rGA by the formation of metal-O-C bonds, which can impede the aggregation of FeNi3 alloys and increase the utilization of active sites. The special structure and partially oxidized FeNi nanorods for FeNi-O-rGA can result in excellent OER activity and catalytic stability. Only 215 mV of overpotential is required to drive the current density of 10 mA/cm2 as well as the Tafel slope of 50.9 mV/dec in 1 mol/L KOH. The change of surface chemistry of FeNi-O-rGA is confirmed by XPS after the OER test, which indicates the highly catalytic stability of FeNi-O-rGA due to the formation of intermediate metal oxyhydroxide.  相似文献   
30.
Assisted by graphene oxide(GO),nano-sized LiMn0.6Fe0.4PO4 with excellent electrochemical performance was prepared by a facile hydrothermal method as cathode material for lithium ion battery.SEM and TEM images indicate that the particle size of LiMn0.6Fe0.4PO4(S2)was about 80 nm in diameter.The discharge capacity of LiMn0.6Fe0.4PO4 nanoparticles was 140.3 mAh-g^1 in the first cycle.It showed that graphene oxide was able to restrict the growth of LiMn0.6Fe0.4PO4 and it in situ reduction of GO could improve the electrical conductivity of LiMn0.6Fe0.4PO4 material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号