首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
化学   14篇
  2019年   1篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2003年   1篇
排序方式: 共有14条查询结果,搜索用时 93 毫秒
11.
Chalcogen-stabilized dimolybdaboranes 3-5 (3: [(CpMo)2B4H5Se(Ph)], 4: [(CpMo)2B4H3Se2(SeCH2Ph)] and 5: [(CpMo)2B3H6(BSR)(μ-η1-SR)] (R = 2,6-(tBu)2-C6H2OH)) have been isolated from the mild pyrolysis of dichalcogenide ligands, RE-E‘R (R = Ph: E = S, E‘ = Se; R = CH2Ph, [2,6-(tBu)2-C6H2OH]: E = E‘ = Se, S) and [(CpMo)2B4H8], 2, an intermediate generated from the reaction of [CpMoCl4] (1) (Cp = η5-C5Me5), with [LiBH4.thf]. The geometry of [(CpMo)2B4H5Se(Ph)] is similar to that of [(CpMo)2B5H9], in which one BH3 unit on the open face is replaced by a triple bridged selenium atom. All the compounds have been characterized in solution by 1H, 11B, 13C NMR and IR spectroscopy and elemental analysis. The structural types were unequivocally established by X-ray crystallographic analysis of compounds 3-5.  相似文献   
12.
Reaction of the molybdaborane arachno-2-[Mo(η-C5H5)(η51-C5H4)B4H7] (I) with the electron-rich molecule [W(PMe3)3H6] at 60 °C for 12 h in toluene gives the novel tungstaborane nido-2-W(PMe3)3H2B4H7[Mo(η-C5H5)(η51-C5H4)H2] (II) in 60% yield. The reaction is almost quantitative when followed by NMR. This is a rare example of metal fragment exchange within a metallaborane cage. The molybdenum atom is retained in the molecule via a σ-bond between the substituted cyclopentadienyl ring and a basal boron atom in the metallaborane cluster.  相似文献   
13.
Recent d-block element metallaborane chemistry, in which metal identity is varied with constant ancillary ligand, demonstrates how the rising energy of the d orbitals as one moves to earlier metals gives rise to non spherical cluster shapes that permit low formal cluster electron counts. In essence, the separation of frontier orbitals from “nonbonding” orbitals required by the isolobal analogy breaks down and the resulting mixing generates additional high-lying empty orbitals concurrently with shape change. A very similar mechanism explains recent p-block cluster chemistry albeit with variation in extent of external cluster ligation as the variable and separation of external lone pair orbitals from cluster bonding as the problem. Sensible, novel explanations of the shape/electron count relationships can be discovered for large group 13 clusters by recognizing the perturbation in cluster orbital energies when stabilization by ligand interactions is removed. These observations are pertinent to an understanding of large p-block clusters with internal atoms often referred to as nanoparticles.  相似文献   
14.
Addition of the internal alkyne, 2-butyne, to nido-1,2-(Cp*RuH)2B3H7 (1) at ambient temperature produces nido-1,2-(Cp*Ru)2(μ-H)(μ-BH2)-4,5-Me2-4,5-C2B2H4 (2), nido-1,2-(Cp*RuH)2-4,5-Me2-4,5-C2B2H4 (3), and nido-1,2-(Cp*RuH)2-4-Et-4,5-C2B2H5 (4), in parallel paths. On heating, 2, which contains a novel exo-polyhedral borane ligand, is converted into closo-1,2-(Cp*RuH)2-4,5-Me2-4,5-C2B3H3 (5) and nido-1,6-(Cp*Ru)2-4,5-Me2-4,5-C2B2H6 (6) the latter being a framework isomer of 3. Heating 2 with 2-butyne generates nido-1,2-(Cp*RuH)2-3-{CMeCMeB(CMeCHMe)2}-4,5-Me2-4,5-C2B2H3 (7) in which the exo-polyhedral borane is triply hydroborated to generate a boron bound ---CMeCMeB(CMeCHMe)2 cluster substituent. Along with 3, 4, 5, 6, and 7, the reaction of 1 with 2-butyne at 85 °C gives closo-1,7-(Cp*Ru)2-2,3,4,5-Me4-6-(CHMeCH2Me)-2,3,4,5-C4B (8). Reaction of 1 with the terminal alkyne, phenylacetylene, at ambient temperature permits the isolation of nido-1,2-(Cp*Ru)2(μ-H)(μ-CHCH2Ph)B3H6 (9) and nido-1,2-(Cp*Ru)2(μ-H)(μ-BH2)-3-(CH2)2Ph-4-Ph-4,5-C2B2H4 (11). The former contains a Ru---B edge-bridging alkylidene fragment generated by hydrometallation on the cluster framework whereas the latter contains an exo-polyhedral borane like that of 2. Thermolysis of 11 results in loss of hydrogen and the formation of closo-1,2-(Cp*RuH)2-3-(CH2)2Ph-4-Ph-4,5-C2B3H3 (12).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号