首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   239篇
  免费   3篇
  国内免费   4篇
化学   241篇
物理学   5篇
  2024年   9篇
  2023年   213篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2014年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  1999年   1篇
排序方式: 共有246条查询结果,搜索用时 15 毫秒
101.
Designing porous materials for C2H2 purification and safe storage is essential research for industrial utilization. We emphatically regulate the metal-alkyne interaction of PdII and PtII on C2H2 sorption and C2H2/CO2 separation in two isostructural NbO metal–organic frameworks (MOFs), Pd/Cu-PDA and Pt/Cu-PDA . The experimental investigations and systematic theoretical calculations reveal that PdII in Pd/Cu-PDA undergoes spontaneous chemical reaction with C2H2, leading to irreversible structural collapse and loss of C2H2/CO2 sorption and separation. Contrarily, PtII in Pt/Cu-PDA shows strong di-σ bond interaction with C2H2 to form specific π-complexation, contributing to high C2H2 capture (28.7 cm3 g−1 at 0.01 bar and 153 cm3 g−1 at 1 bar). The reusable Pt/Cu-PDA efficiently separates C2H2 from C2H2/CO2 mixtures with satisfying selectivity and C2H2 capacity (37 min g−1). This research provides valuable insight into designing high-performance MOFs for gas sorption and separation.  相似文献   
102.
Pore size plays a critical role in determining the performance of metal-organic frameworks (MOFs) in catalysis, sensing, and gas storage or separation. However, revealing the pore-size/property relationship remains extremely challenging because ideal structure models possessing different pore sizes but having the same components are lacking. In this work, a solvent-coordination directed structure swelling method was developed for modulating the ratio between the large and narrow pore phases of a flexible MOF, MIL-88B . Pore-size-dependent gas sensitivity and selectivity were studied for the first time in the MIL-88B samples. The optimized MIL-88B-20 % sample showed one of the best sensing performances among all the reported MOF-based H2S-sensing materials. This work not only provides a method to synthesize ideal structure models for revealing the relationship between pore-size and properties, but also may inspire the development of high-performance gas sensing materials.  相似文献   
103.
Metal–organic frameworks (MOFs) have been increasingly applied in oxygen evolution reaction (OER), and the surface of MOFs usually undergoes structural transformation to form metal oxyhydroxides to serve as catalytically active sites. However, the controllable regulation of the reconstruction process of MOFs remains as a great challenge. Here we report a defect engineering strategy to facilitate the structural transformation of MOFs to metal oxyhydroxides during OER with enhanced activity. Defective MOFs (denoted as NiFc′xFc1-x) with abundant unsaturated metal sites are constructed by mixing ligands of 1,1′-ferrocene dicarboxylic acid (Fc′) and defective ferrocene carboxylic acid (Fc). NiFc′xFc1-x series are more prone to be transformed to metal oxyhydroxides compared with the non-defective MOFs (NiFc′). Moreover, the as-formed metal oxyhydroxides derived from defective MOFs contain more oxygen vacancies. NiFc′Fc grown on nickel foam exhibits excellent OER catalytic activity with an overpotential of 213 mV at the current density of 100 mA cm−2, superior to that of undefective NiFc′. Experimental results and theoretical calculations suggest that the abundant oxygen vacancies in the derived metal oxyhydroxides facilitate the adsorption of oxygen-containing intermediates on active centers, thus significantly improving the OER activity.  相似文献   
104.
Spin crossover (SCO) materials with new architectures will expand and enrich the research in the SCO field. Here, we report two metal–organic frameworks (MOFs) containing tetradentate organic ligands and hexatopic linkers [Ag8X8(CN)6]6− (X=Br and I), which represents the first SCO MOF with clusters as building blocks. The silver halide cluster can be further removed after reacting with lithium tetracyanoquinodimethan (LiTCNQ). Such post-synthetic modification (PSM) is realized via single-crystal to single-crystal (SCSC) transformation from urk to nbo topology. Accordingly, the spin state and fluorescence properties are greatly modified by cluster deconstruction. Therefore, these achievements will provide new ideas for the design of new SCO systems and the development of PSM methods.  相似文献   
105.
The development of covalent organic framework (COF) sonosensitizers with intrinsic sonodynamic effects is highly desirable. However, such COFs are generally constructed using small-molecule photosensitizers. Herein, we report that the reticular chemistry-based synthesis of COFs from two inert monomers yields a COF-based sonosensitizer (TPE-NN) with inherent sonodynamic activity. Subsequently, a nanoscale COF TPE-NN is fabricated and embedded with copper (Cu)-coordinated sites to obtain TPE-NN-Cu. Results show that Cu coordination can enhance the sonodynamic effect of TPE-NN, whereas ultrasound (US) irradiation for sonodynamic therapy can augment the chemodynamic efficacy of TPE-NN-Cu. Consequently, TPE-NN-Cu upon US irradiation shows high-performance anticancer effects based on mutually reinforced sono-/chemo-nanodynamic therapy. This study reveals the backbone-originated sonodynamic activity of COFs and proposes a paradigm of intrinsic COF sonosensitizers for nanodynamic therapy.  相似文献   
106.
Senescent cells are the critical drivers of atherosclerosis formation and maturation. Mitigating senescent cells holds promise for the treatment of atherosclerosis. In an atherosclerotic plaque microenvironment, senescent cells interact with reactive oxygen species (ROS), promoting the disease development. Here, we hypothesize that a cascade nanozyme with antisenescence and antioxidant activities can serve as an effective therapeutic for atherosclerosis. An integrated cascade nanozyme with superoxide dismutase- and glutathione peroxidase-like activities, named MSe1, is developed in this work. The obtained cascade nanozyme can attenuate human umbilical vein endothelial cell (HUVEC) senescence by protecting DNA from damage. It significantly weakens inflammation in macrophages and HUVECs by eliminating overproduced intracellular ROS. Additionally, the MSe1 nanozyme effectively inhibits foam cell formation in macrophages and HUVECs by decreasing the internalization of oxidized low-density lipoprotein. After intravenous administration, the MSe1 nanozyme significantly inhibits the formation of atherosclerosis in apolipoprotein E-deficient (ApoE−/−) mice by reducing oxidative stress and inflammation and then decreases the infiltration of inflammatory cells and senescent cells in atherosclerotic plaques. This study not only provides a cascade nanozyme but also suggests that the combination of antisenescence and antioxidative stress holds considerable promise for treating atherosclerosis.  相似文献   
107.
Coordination assembly offers a versatile means to developing advanced materials for various applications. However, current strategies for assembling metal-organic networks into nanoparticles (NPs) often face challenges such as the use of toxic organic solvents, cytotoxicity because of synthetic organic ligands, and complex synthesis procedures. Herein, we directly assemble metal-organic networks into NPs using metal ions and polyphenols (i.e., metal-phenolic networks (MPNs)) in aqueous solutions without templating or seeding agents. We demonstrate the role of buffers (e.g., phosphate buffer) in governing NP formation and the engineering of the NP physicochemical properties (e.g., tunable sizes from 50 to 270 nm) by altering the assembly conditions. A library of MPN NPs is prepared using natural polyphenols and various metal ions. Diverse functional cargos, including anticancer drugs and proteins with different molecular weights and isoelectric points, are readily loaded within the NPs for various applications (e.g., biocatalysis, therapeutic delivery) by direct mixing, without surface modification, owing to the strong affinity of polyphenols to various guest molecules. This study provides insights into the assembly mechanism of metal-organic complexes into NPs and offers a simple strategy to engineer nanosized materials with desired properties for diverse biotechnological applications.  相似文献   
108.
Benefiting from the excellent structural tunability, robust framework, ultrahigh porosity, and rich active sites, covalent organic frameworks (COFs) are widely recognized as promising photocatalysts in chemical conversions, and emerged in the hydrogen peroxide (H2O2) photosynthesis in 2020. H2O2, serving as an environmental-friendly oxidant and a promising liquid fuel, has attracted increasing researchers to explore its potential. Over the past few years, numerous COFs-based photocatalysts are developed with encouraging achievements in H2O2 production, whereas no comprehensive review articles exist to summarize this specific and significant area. Herein we provide a systematic overview of the advances and challenges of COFs in photocatalytic H2O2 production. We first introduce the priorities of COFs in H2O2 photosynthesis. Then, various strategies to improve COFs photocatalytic efficiency are discussed. The perspective and outlook for future advances of COFs in this emerging field are finally offered. This timely review will pave the way for the development of highly efficient COFs photocatalysts for practical production of value-added chemicals not limited to H2O2.  相似文献   
109.
The selectivity control of Pd nanoparticles (NPs) in the direct CO esterification with methyl nitrite toward dimethyl oxalate (DMO) or dimethyl carbonate (DMC) remains a grand challenge. Herein, Pd NPs are incorporated into isoreticular metal–organic frameworks (MOFs), namely UiO-66-X (X=-H, -NO2, -NH2), affording Pd@UiO-66-X, which unexpectedly exhibit high selectivity (up to 99 %) to DMC and regulated activity in the direct CO esterification. In sharp contrast, the Pd NPs supported on the MOF, yielding Pd/UiO-66, displays high selectivity (89 %) to DMO as always reported with Pd NPs. Both experimental and DFT calculation results prove that the Pd location relative to UiO-66 gives rise to discriminated microenvironment of different amounts of interface between Zr-oxo clusters and Pd NPs in Pd@UiO-66 and Pd/UiO-66, resulting in their distinctly different selectivity. This is an unprecedented finding on the production of DMC by Pd NPs, which was previously achieved by Pd(II) only, in the direct CO esterification.  相似文献   
110.
Covalent organic frameworks (COFs) have emerged as efficient heterogeneous photocatalysts for a wide range of relatively simple organic reactions, whereas their application in complex organic transformations, like site-selective functionalization of unactivated C−H bonds, is underexplored, which can be mainly attributed to the lack of highly active organophotocatalytic cores. Herein through bonding oxygen atoms at the N-terminus of quinolines in nonsubstituted quinoline-linked COFs (NQ−COFs), we successfully realized the embedding of active hydrogen atom transfer (HAT) moieties into the skeleton of COFs. This novel designed COF (NQ−COFE5−O), serving as both an excellent photosensitizer and HAT catalyst, exhibited much higher efficiency in C−H functionalization than the corresponding NQ−COFE5. Specially, we evaluated the photocatalytic performance of NQ−COFE5−O on ten different substrates, including quinolines, benzothiazole, and benzoxazole, all of which were transferred to desired products in moderate to high yields (up to 93 %). Furthermore, the as-synthesized NQ−COFE5−O displayed excellent photostability and could be reused with negligible loss of activity for five catalytic cycles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号