首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1162篇
  免费   25篇
  国内免费   110篇
化学   1047篇
晶体学   1篇
力学   56篇
综合类   3篇
数学   20篇
物理学   170篇
  2024年   8篇
  2023年   60篇
  2022年   17篇
  2021年   38篇
  2020年   31篇
  2019年   17篇
  2018年   7篇
  2017年   18篇
  2016年   23篇
  2015年   20篇
  2014年   48篇
  2013年   33篇
  2012年   42篇
  2011年   53篇
  2010年   45篇
  2009年   95篇
  2008年   160篇
  2007年   79篇
  2006年   87篇
  2005年   65篇
  2004年   51篇
  2003年   28篇
  2002年   27篇
  2001年   30篇
  2000年   19篇
  1999年   21篇
  1998年   20篇
  1997年   18篇
  1996年   33篇
  1995年   20篇
  1994年   18篇
  1993年   13篇
  1992年   5篇
  1991年   9篇
  1990年   7篇
  1989年   10篇
  1988年   5篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   5篇
  1983年   2篇
  1981年   2篇
  1970年   1篇
排序方式: 共有1297条查询结果,搜索用时 12 毫秒
21.
Summary The partition of the spin probe TEMPO between the fluid lipid phase of single-walled vesicles of dipalmitoylphosphatidylcholine and the aqueous bulk solution have been used to investigate the interaction of monovalent ions with polar head of neutral phospholipids. The study has been performed by electron spin resonance (ESR) spectroscopy in the temperature range of (20÷60)°C and in the presence of (0÷3) M 1∶1 electrolyte. In the absence of electrolyte the spin probe TEMPO reveals the characteristic order→disorder DPPC main phase transition atT m≈37°C, while the pretransition occurs atT p≈27.5°C. On increasing the ionic strength of the dispersion medium it results for the partition coefficient,P C, that, at each temperature,P C(3)>P C(2)>P C(1)>P C(0). Correspondingly, the pretransition disappears and theT m value downshifts from ≈37°C with 0 M electrolyte to ≈34°C with 3M salt in the order:T m(3)>T m(2)>T m(1)>T m(0). The results suggest an increase in the net surface charge density of vesicles due to high ionic-strength values. The alteration of the electric interactions occurring into the polar zone of DPPC bilayer reduces the hindrances which, in turn, favour the enhancement of TEMPO partitioning in the hydrophobic core of phospholipid bilayers. The authors of this paper have agreed to not receive the proofs for correction.  相似文献   
22.
Membranes in thermal equilibrium are well known to exhibit Brownian motion type shape fluctuations. Membranes containing active force centers -- such as chemically active membrane proteins -- suffer additional non-equilibrium shape fluctuations due to the activity of these force centers. We demonstrate, using scaling arguments, that non-equilibrium shape fluctuations are in general greatly amplified by the presence of a nearby wall or membrane due to the absence of a fluctuation-dissipation theorem. For adhesive membranes, this fluctuation magnification effect may facilitate the establishment of bonding. For non-adhesive membranes, fluctuation magnification produces a long-range repulsive pressure which can exceed the well known Helfrich repulsion due to purely thermal fluctuations. Received: 1 September 1997 / Accepted: 3 December 1997  相似文献   
23.
MXene, well-identified as Ti3C2TX, belongs to the family of two-dimensional (2D) materials, which have been currently explored in various applications. Very recently, such materials have been pointed out as potential nanomaterials for advanced solute separations when introduced in membranes, such as ion separation, gas separation, nanofiltration, chiral molecular separation, and solvent separation. This latter separation, generally named Pervaporation (PV), is identified as a highly selective technology for water separations. To date, few pieces of research have been released but providing interesting insights into several solvent (including water) separations. Hence, this brief review aims to analyze and discuss the latest advances for utilizing MXenes for PV membranes. Particular emphasis has been devoted to the relevant outcomes in the field, along with the strategies followed by researchers to tailor membranes. Based on the current findings, the perspectives in the field are also stated.  相似文献   
24.
The processes of lactic acid production include two key stages, which are (a) fermentation and (b) product recovery. In this study, free cell of Bifidobacterium longum was used to produce lactic acid from cheese whey. The produced lactic acid was then separated and purified from the fermentation broth using combination of nanofiltration and reverse osmosis membranes. Nanofiltration membrane with a molecular weight cutoff of 100–400 Da was used to separate lactic acid from lactose and cells in the cheese whey fermentation broth in the first step. The obtained permeate from the above nanofiltration is mainly composed of lactic acid and water, which was then concentrated with a reverse osmosis membrane in the second step. Among the tested nanofiltration membranes, HL membrane from GE Osmonics has the highest lactose retention (97 ± 1%). In the reverse osmosis process, the ADF membrane could retain 100% of lactic acid to obtain permeate with water only. The effect of membrane and pressure on permeate flux and retention of lactose/lactic acid was also reported in this paper.  相似文献   
25.
Extraction and transport behaviors of isomeric oxathia macrocycles (L2, ortho-; L3, meta- and L4, para-isomer) and their structure related open-chain compound (L1) towards Ag(I) picrate have been examined. From the plot of log (DAg(I)/[pic]) vs. log [L]0 for all of the ionophores were linear with slope near unity, thereby confirming the 1:1:1 complex formations of Ag(I)/ligand/picrate ion to be extracted into the dichloromethane phase. The extractability of an acyclic ionophore was superior to those of the corresponding cyclic ones. In membrane transport experiments, the slow rate of release of Ag(I) from the membrane into the receiving phase seems to be responsible for lower transport efficiency. Upon addition of sodium thiosulfate as a stripping reagent in receiving phase, the efficiency of transport is significantly enhanced in the order of L1 (acyclic)>L2 (ortho-)>L3 (meta-)>L4 (para-) in accordance with those of log Kex values. It is hypothesized that the ion-pair complexation of L1 in extraction step would be more favorable in extraction and transport of Ag(I). Its structure have been confirmed by X-ray diffraction analysis of [Ag(L1)pic], where L1=1,10-bis(mercaptobenzylyl)-4,7-dioxadecane.  相似文献   
26.
The selective enhancement of membrane introduction mass spectrometry for non-polar alkanes, alkenes, and aromatic hydrocarbon compounds by the application of acetonitrile as a chemical ionization reagent was investigated. Acetonitrile Cl is able to produce specific fragment ions for many of the compounds test and this can be used to identify and quantify the parent neutrals. This method provided relatively high detection limits of the test compounds. This method could potentially be useful for analytical applications such as the detection of non-polar hydrocarbons for environmental studies if CH3CN Cl/MIMS is coupled with a preconcentration method.  相似文献   
27.
The method of preparing protein mixtures for electrophoretic analysis of membrane-associated cell proteins was improved. By sonication, about one-half of the proteins of thyroid cells were released into the supernatant, while the other half preferentially comprising membrane proteins still remained in cell fragments, which could be sedimented by centrifugation. After sonication, even those proteins which remained in cell fragments, could completely be dissolved by free-flow isoelectric focusing media. They migrated through the free-flow electrophoresis chamber without forming precipitates. Because of these improvements, it was possible to show that the two thyroid cancer cell lines ML-1 and ONCO-DG1 express cytokeratin 8 at similar rates, but cytokeratins 7 and 18 differently. In addition, the presence of inorganic pyrophosphatase, tubulin-beta-5, and tubulin-beta-1 chains in human thyroid cells was proved for the first time.  相似文献   
28.
This work describes newly synthesized composite polymeric membranes and their utilization in propane/propylene separation in a gas mixture. The nonporous composite polymers were successfully synthesized by using thermoplastic polyurethane (TPU) and several silver salts/silver salts with ionic liquids (ILs). Our studies showed that silver bis(trifluoromethanesulfonyl)imide (Ag[Tf2N]) containing membranes outperformed other silver salt containing membranes in terms of selectivity. In addition, to this finding, ILs, as additives for the membranes, enhanced the selectivity by facilitating improved coordination of the olefin with the silver ions in the dense composite polymers.  相似文献   
29.
Nanoparticles are increasingly being used for treatment and diagnostic purposes, but their effects on cells is not fully understood. Here, the interaction of fluorescent up-conversion nanoparticles (UpC-NPs) with neutrophils was investigated by imaging and measurement of membrane-cytosceletal elasticity by atomic force microscopy. It was found that UpC-NPs induce the death of neutrophils mainly by necrosis, and to a smaller extent by a novel process called ‘mummification'. Necrosis occurs by gradual loss of intracellular contents and nuclei, 45–110 min after exposure to UpC-NPs. Mummification is apparent as an increase in the rigidity of the neutrophils' membrane and acquisition of a characteristic bumpy shape with numerous protrusions; this structure does not change during atomic force microscopy scanning. Coating UpC-NPs with protein by incubation with serum leads to (1) formation of nanoparticle aggregates in the nm and μm size range, (2) a reduction in toxicity, (3) reduced mummification of neutrophils, and (4) no significant reduction of the elasticity of the membrane-cytoskeletal complex of neutrophils 30 min after exposure to coated UpC-NPs. The study shows that serum proteins greatly curb the toxicity of nanoparticles and reveals mummification as a novel mechanism of UpC-NP-induced cell death.  相似文献   
30.
Unlike thermal processes such as distillation, pervaporation relies on the relative rates of solute permeation through a membrane and is a combination of evaporation and gas diffusion. The analytical pervaporation systems consist of a membrane module suitable for liquid sample introduction and a vacuum (or a sweeping gas) on the permeate side. It has been used in a wide range of applications including the analysis of various organic and inorganic compounds, and sample concentration. It has been directly interfaced with gas chromatography, spectrophotometry, capillary electrophoresis, electrochemical detectors, liquid chromatography, and mass spectrometry. A wide range of liquids, slurries, and solids samples has been analyzed using these techniques. This review highlights the basic principles of the pervaporation and the state of its current development as applied to analytical chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号