首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   1篇
  国内免费   3篇
化学   6篇
力学   5篇
数学   1篇
物理学   76篇
  2023年   1篇
  2022年   2篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
  2012年   13篇
  2011年   13篇
  2010年   19篇
  2009年   9篇
  2008年   8篇
  2007年   1篇
  2006年   3篇
  2004年   3篇
  2001年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1973年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
21.
A model to describe the influence of torsional stress on nonlinear magnetoimpedance in amorphous wires with negative magnetostriction is proposed. The nonlinear voltage response is found in the framework of the low-frequency approximation taking into account the spatial distribution of the circular magnetic field and the magnetoelastic anisotropy induced by the torsional stress. It is demonstrated that the application of torsional stress results in an increase of the second harmonic amplitude in voltage due to a reinforcement of helical anisotropy in the wire. The second harmonic amplitude is analyzed as a function of external field, torsional stress and current amplitude. The ranges of torsional stress and current amplitude to achieve maximal field sensitivity of the second harmonic are found.  相似文献   
22.
针对深水、低频、宽带换能器的技术需求,结合Janus-Helmholtz换能器的结构特点和铁镓单晶材料低场应变大及机械强度高的特性,提出了铁镓单晶Janus-Helmholtz换能器设计方案。采用永磁偏磁场和环形闭合磁路,建立了一系列铁镓单晶磁致伸缩换能器理论分析模型,包括对磁致伸缩材料参数进行线性化处理,设计了换能器最佳工作点,结合静态磁场和动态磁场分布情况分段细化换能器驱动等效参数,以及利用全阻抗模型通过电感损耗等效计算换能器静态阻抗,然后通过二维有限元分析等效模型,优化分析了换能器的结构参数与电声性能。最后制作了换能器样机,并进行了测试与分析。对比仿真和测试结果表明:全阻抗模型得到的阻抗曲线与样机测试结果相一致,有限元等效模型计算的发送电流响应与样机测试结果良好吻合。换能器样机水中谐振基频为1000Hz,谐振频率下发送电流响应176.4dB;在875~2300Hz频率范围内,发送电流响应起伏不大于6dB;增加驱动电流有效值到16.2A,最大声源级可以达到196.2dB。  相似文献   
23.
First-principles calculations have been carried out to study the electronic structure and magnetic properties of the Fe3Zn compound with the full-potential linearized augmented-plane wave (FLAPW) method. The results indicate a lower magnetostriction for Fe3Zn as compared to Galfenol (Fe-Ga), as a result of a weaker spin-orbit coupling, which is due to a smaller magnetic moment induced on the Zn atom. With the Zn addition to Fe the bulk modulus and the cohesive energy (per atom) decrease, whereas the electronic specific heat coefficient γ has a substantial increase.  相似文献   
24.
A real-space phase field model based on the time-dependent Ginzburg–Landau (TDGL) equation is developed to predict the domain evolution of ferromagnetic materials. The phase field model stems from a thermodynamic theory of ferromagnetic materials which employs the strain and magnetization as independent variables. The phase field equations are shown to reduce to the common micromagnetic model when the magnetostriction is absent and the magnitude of magnetization is constant. The strain and magnetization in the equilibrium state are obtained simultaneously by solving the phase field equations via a nonlinear finite element method. The finite-element based phase field model is applicable for the domain evolution of ferromagnetic materials with arbitrary geometries and boundary conditions. The evolution of magnetization domains in ferromagnetic thin film subjected to external stresses and magnetic fields are simulated and the magnetoelastic coupling behavior is investigated. Phase field simulations show that the magnetization vectors form a single magnetic vortex in ferromagnetic disks and rings. The configuration and size of the simulated magnetization vortex are in agreement with the experimental observation, suggesting that the phase field model is a powerful tool for the domain evolution of ferromagnetic materials.  相似文献   
25.
Our studies comprise electrical dielectric and magnetoelectric properties of CoFe2O4 (CFO) and Pb(Mg1/3Nb2/3)0.67Ti0.33O3 [PMN-PT] magnetoelectric composites. The individual phases were prepared by conventional ceramic method. The particulate composites of ferrite and ferroelectric phases were prepared in ferroelectric rich region. Presence of both the phases in the composites was confirmed using X-ray diffraction techniques. The scanning electron microscopic images recorded in backscattered mode were used to study the microstructure of composites. Lattice constant, dielectric constant, electrical resistivity, ferroelectric, and magnetic properties of individual as well as particulate composites were studied. Further the bi-layer composites were made using the discs obtained from the powders of individual phases where hot press technique was employed to obtain disc of individual phases. CFO phase used in bi-layer composites was obtained using chemical co-precipitation technique. Magnetoelectric (ME) measurements were carried out on both, particulate and layered magnetoelectric composites. Comparison of ME signal obtained from particulate and layered composites revealed that the layered composites gives superior magnetoelectric signal. ME data obtained for layered composites show good agreement with the theoretical model.  相似文献   
26.
Cobalt-ferrite (CoFe2O4) based materials are suitable candidates for magnetomechanical sensor applications owing to a strong sensitivity of their magnetostriction to an applied magnetic field. Zn-doped cobalt-ferrites, with nominal compositions CoFe2−xZnxO4 (x=0–0.3), were synthesized by auto-combustion technique using Co- , Fe- , and Zn-nitrate as precursors. X-ray spectra analysis and Transmission electron microscopy studies revealed that the as-prepared powders were comprised of nano-crystalline (∼25–30 nm) cubic-spinel phase with irregularly-shaped grains morphology along with minor impurity phases. Calcination (800 °C for 3 h) of the precursor followed by sintering (1300 °C for 12 h) resulted in a single phase cubic-spinel structure with average grain size ∼2–4 μm, as revealed from scanning electron micrographs. The magnitude of coercive field decreases from ∼540 Oe for x=0 to 105 Oe for x=0.30. Saturation magnetization initially increases and peaks to ∼87 emu/g for x=0.2 and then decreases. The peak value of magnetostriction monotonically decreases with increasing Zn content in the range 0.0–0.3; however the piezomagnetic coefficient (/dH) reaches a maximum value of 105×10−9 Oe−1 for x=0.1. The observed variation in piezomagnetic coefficient in the Zn substituted cobalt ferrite is related to the reduced anisotropy of the system. The Zn-doped cobalt-ferrite (x=0.1) having high strain derivative could be a potential material for stress sensor application.  相似文献   
27.
Thermal expansion and magnetostriction of members of a homologous series of compounds based on the alloy series Pr(n+2)(n+1)Nin(n−1)+2Sin(n+1) have been measured. The crystal structures of these compounds are closely interrelated because they form trigonal prismatic columns in which the number of trigonal prisms that form the base of the trigonal columns is determined by the value of n in the chemical formula. Two compositions were investigated, Pr5Ni2Si3 and Pr15Ni7Si10, corresponding to n=3n=3 and n=4,n=4, respectively. The results were analyzed and used to determine the location of magnetic phase transitions by calculating the magnetic contribution to thermal expansion using the Gruneisen–Debye theory. This allowed more precise determination of the magnetic transition temperatures than could be achieved using the total thermal expansion. The results show two phase transitions in each material, one corresponding to the Curie temperature and the other at a lower temperature exhibiting characteristics of a spin reorientation transition.  相似文献   
28.
The complex behaviors of magnetic materials subjected to magneto-electro-mechanical coupled fields call for a better understanding of the mechanism of multi-fields coupling. In this paper, micromagnetic modeling is carried out to study the effect of stress on hysteresis loops and dynamic magnetization reversal. The time-dependent Landau–Lifshitz–Gilbert equation which governs the evolution of magnetization is solved using the fast Fourier transform technique in reciprocal space. The simulation results show that the stress changes the distribution of easy directions and, therefore, leads to the change of magnetic properties. Moreover, the positive product of the stress and saturation magnetostriction coefficients increases the coercivity, hence, increases the area enclosed by the hysteresis loop. A stress-induced magnetization reversal is investigated.  相似文献   
29.
The magnetoelastic properties of iron-rich REFe10V2 (RE=Nd, Y) compounds were studied via magnetostriction and thermal expansion measurements in the 5–300 K range of temperature in up to 6 T external fields. Results of thermal expansion analysis show that the spontaneous magnetostriction of the compounds mostly originates from itinerant magnetization. Besides, the small volume striction appearing in the thermal expansion of the Nd compound close to 50 K suggests the existence of a basal to conical spin re-orientation transition. The volume magnetostriction isotherms of both compounds take minimum values for external field corresponding to the anisotropy field. In addition, the anisotropic and the volume magnetostriction traces of the NdFe10V2 take marked maxima under low field, with a relatively large initial magnetostrictivity, again more pronounced at the conical–axial spin re-orientation transition (TSR=130 K). Analysis of the anisotropic magnetostriction of the Nd compound leads to the conclusion that the contribution of Nd–Fe interactions is negligible. The temperature dependence of volume magnetostriction is in good agreement with prediction of a phenomenological model based upon a fluctuating local band theory. This analysis shows that the difference between the forced volume strictions of Y and Nd compounds below and above TSR originates from the Nd sublattice magnetization.  相似文献   
30.
The effect of coupled magnetomechanical loading on magnetostriction and compressive strain of Fe-Ga alloys has been investigated. A shift from negative to positive magnetostriction was observed with increase in compressive stress on a Fe85Ga15 single crystal. Non-linear behavior of the compressive strain in different magnetic fields was observed during the compressive loading and unloading process. These phenomena can clearly be explained by a model based on the magnetic-domain-switching process. The Young's modulus can also be obtained from the measured stress-strain curves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号