首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2381篇
  免费   271篇
  国内免费   106篇
化学   1243篇
晶体学   17篇
力学   244篇
综合类   4篇
数学   167篇
物理学   1083篇
  2024年   12篇
  2023年   31篇
  2022年   115篇
  2021年   125篇
  2020年   119篇
  2019年   108篇
  2018年   81篇
  2017年   102篇
  2016年   112篇
  2015年   100篇
  2014年   108篇
  2013年   220篇
  2012年   126篇
  2011年   144篇
  2010年   112篇
  2009年   131篇
  2008年   119篇
  2007年   148篇
  2006年   124篇
  2005年   79篇
  2004年   101篇
  2003年   79篇
  2002年   67篇
  2001年   39篇
  2000年   39篇
  1999年   40篇
  1998年   33篇
  1997年   34篇
  1996年   16篇
  1995年   13篇
  1994年   16篇
  1993年   13篇
  1992年   10篇
  1991年   7篇
  1990年   3篇
  1989年   7篇
  1988年   3篇
  1987年   5篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1982年   1篇
  1979年   4篇
  1976年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有2758条查询结果,搜索用时 140 毫秒
61.
Hydration of the copper(II) bis‐complexes with glycine, serine, lysine, and aspartic acid was studied by DFT and MD simulation methods. The distances between copper(II) and water molecules in the 1st and 2nd coordination shells, the average number of water molecules and their mean residence times in the hydration shells were calculated. Good agreement was observed between the values obtained and those found by DFT and NMR relaxation methods. Influence of the functional groups of the ligands and the cistrans isomerism of the complexes on the structural and dynamical parameters of the hydration shells was displayed and explained. Analysis of the MD trajectories reveals the competition for a copper(II) axial position between water molecules or water molecules and the functional chain groups of the ligands and confirms the suggestion on the pentacoordination of copper(II) in such complexes. MD simulations show that only one axial position of Cu(II) is basically occupied at each time step while in average the coordination number more than 5 is observed. © 2017 Wiley Periodicals, Inc.  相似文献   
62.
The gas‐phase reactions of XH? (X=O, S) + CH3Y (Y=F, Cl, Br) span nearly the whole range of SN2 pathways, and show an intrinsic reaction coordinate (IRC) (minimum energy path) with a deep well owing to the CH3XH???Y? (or CH3S????HF) hydrogen‐bonded postreaction complex. MP2 quasiclassical‐type direct dynamics starting at the [HX???CH3???Y]? transition‐state (TS) structure reveal distinct mechanistic behaviors. Trajectories that yield the separated CH3XH+Y? (or CH3S?+HF) products directly are non‐IRC, whereas those that sample the CH3XH???Y? (or CH3S????HF) complex are IRC. The IRCIRC/non‐IRC ratios of 90:10, 40:60, 25:75, 2:98, 0:100, and 0:100 are obtained for (X, Y)=(S, F), (O, F), (S, Cl), (S, Br), (O, Cl), and (O, Br), respectively. The properties of the energy profiles after the TS cannot provide a rationalization of these results. Analysis of the energy flow in dynamics shows that the trajectories cross a dynamical bifurcation, and that the inability to follow the minimum energy path arises from long vibration periods of the X?C???Y bending mode. The partition of the available energy to the products into vibrational, rotational, and translational energies reveals that if the vibrational contribution is more than 80 %, non‐IRC behavior dominates, unless the relative fraction of the rotational and translational components is similar, in which case a richer dynamical mechanism is shown, with an IRC/non‐IRC ratio that correlates to this relative fraction.  相似文献   
63.
The three‐dimensional (3D) confinement effect on the microphase‐separated structure of a diblock copolymer was investigated both experimentally and computationally. Block copolymer nanoparticles were prepared by adding a poor solvent into a block copolymer solution and subsequently evaporating the good solvent. The 3D structures of the nanoparticles were quantitatively determined with transmission electron microtomography (TEMT). TEMT observations revealed that various complex structures, including tennis‐ball, mushroom‐like, and multipod structures, were formed in the 3D confinement. Detailed structural analysis, showed that one block of the diblock copolymer slightly prefers to segregate into the particle surface compared with the other block. The observed structures were further elaborated using cell dynamics computer simulation. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1702–1709  相似文献   
64.
A food web model with a closed nutrient cycle is presented and analyzed via Monte Carlo simulations. The model consists of three trophic levels, each of which is populated by animals of one distinct species. While the species at the intermediate level feeds on the basal species, and is eaten by the predators living at the highest level, the basal species itself uses the detritus of animals from higher levels as the food resource. The individual organisms remain localized, but the species can invade new lattice areas via proliferation. The impact of different proliferation strategies on the viability of the system is investigated. From the phase diagrams generated in the simulations it follows that in general a strategy with the intermediate level species searching for food is the best for the survival of the system. The results indicate that both the intermediate and top level species play a critical role in maintaining the structure of the system.  相似文献   
65.
A method is presented to relate local morphology and ionic conductivity in a solid, lamellar block copolymer electrolyte for lithium batteries, by simulating conductivity through transmission electron micrographs. The electrolyte consists of polystyrene‐block‐poly(ethylene oxide) mixed with lithium bis(trifluoromethanesulfonyl) imide salt (SEO/LiTFSI), where the polystyrene phase is structural phase and the poly(ethylene oxide)/LiTFSI phase is ionically conductive. The electric potential distribution is simulated in binarized micrographs by solving the Laplace equation with constant potential boundary conditions. A morphology factor, f, is reported for each image by calculating the effective conductivity relative to a homogenous conductor. Images from two samples are examined, one annealed with large lamellar grains and one unannealed with small grains. The average value of f is 0.45 ± 0.04 for the annealed sample, and 0.37 ± 0.03 for the unannealed sample, both close to the value predicted by effective medium theory, 1/2. Simulated conductivities are compared to published experimental conductivities. The value of fUnannealed/fAnnealed is 0.82 for simulations and 6.2 for experiments. Simulation results correspond well to predictions by effective medium theory but do not explain the experimental measurements. Observation of nanoscale morphology over length scales greater than the size of the micrographs (~1 μm) may be required to explain the experimental results. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 266–274  相似文献   
66.
This article is the numerical counterpart of a theoretical work in progress Qin and Teman, Applicable Anal (2011), 1–19, related to the approximation of evolution hyperbolic equations with incompatible data. The Korteweg‐de Vries and Schrödinger equations with incompatible initial and boundary data are considered here. For hyperbolic equations, the lack of regularity (compatibility) is known to produce large numerical errors which propagate throughout the spatial domain, destroying convergence. In this article, we numerically test the effectiveness of the penalty‐based method proposed in Qin and Teman, Applicable Anal (2011), 1–19, which replaces the hyperbolic equations with incompatible data by a system with compatible data. We observe that convergence is increased. As explained in the text, in the case of the Schrödinger equation, the impact of incompatible (nonregular) data is most severe, and the authors are not aware of any other method that can handle such severe incompatible data. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2011  相似文献   
67.
We report an enhanced sampling technique that allows to reach the multi‐nanosecond timescale in quantum mechanics/molecular mechanics molecular dynamics simulations. The proposed technique, called horsetail sampling, is a specific type of multiple molecular dynamics approach exhibiting high parallel efficiency. It couples a main simulation with a large number of shorter trajectories launched on independent processors at periodic time intervals. The technique is applied to study hydrogen peroxide at the water liquid–vapor interface, a system of considerable atmospheric relevance. A total simulation time of a little more than 6 ns has been attained for a total CPU time of 5.1 years representing only about 20 days of wall‐clock time. The discussion of the results highlights the strong influence of the solvation effects at the interface on the structure and the electronic properties of the solute. © 2017 Wiley Periodicals, Inc.  相似文献   
68.
《Molecular physics》2012,110(11-12):1107-1114
We report the self-diffusion coefficients and hindrance factor for the diffusion of ions into cylindrical hydrophilic silica nanopores (hydrated silica) determined from molecular dynamics (MD) simulations. We make a comparison with the hindered diffusion coefficients used in continuum-based models of nanofiltration (NF). Hindrance factors for diffusion estimated from the macroscopic hydrodynamic theory were found to be in fair quantitative agreement with MD simulations for a protonated pore, but they strongly overestimate diffusion inside a deprotonated pore.  相似文献   
69.
Molecular dynamics simulations of the displacement cascades in Fe-10%Cr systems are used to simulate the primary knocked-on atom events of the irradiation damage at temperatures 300,600,and 750 K with primary knockedon atom energies between 1 and 15 keV.The results indicate that the vacancies produced by the cascade are all in the central region of the displacement cascade.During the cascade,all recoil Fe and Cr atoms combine with each other to form Fe-Cr or Fe-Fe interstitial dumbbells as well as interstitial clusters.The number and the size of interstitial clusters increase with the energy of the primary knocked-on atom and the temperature.A few large clusters consist of a large number of Fe interstitials with a few Cr atoms,the rest are Fe-Cr clusters with small and medium sizes.The interstitial dumbbells of Fe-Fe and Fe-Cr are in the 111 and 110 series directions,respectively.  相似文献   
70.
Molten salt electrolysis is a vital technique to produce high-purity lanthanide metals and alloys. However, the coordination environments of lanthanides in molten salts, which heavily affect the related redox potential and electrochemical properties, have not been well elucidated. Here, the competitive coordination of chloride and fluoride anions towards lanthanide cations (La3+ and Nd3+) is explored in molten LiCl-KCl-LiF-LnCl3 salts using electrochemical, spectroscopic, and computational approaches. Electrochemical analyses show that significant negative shifts in the reduction potential of Ln3+ occur when F concentration increases, indicating that the F anions interact with Ln3+ via substituting the coordinated Cl anions, and confirm [LnClxFy]3−x−y (ymax=3) complexes are prevailing in molten salts. Spectroscopic and computational results on solution structures further reveal the competition between Cl and F anions, which leads to the formation of four distinct Ln(III) species: [LnCl6]3−, [LnCl5F]3−, [LnCl4F2]3− and [LnCl4F3]4−. Among them, the seven-coordinated [LnCl4F3]4− complex possesses a low-symmetry structure evidenced by the pattern change of Raman spectra. After comparing the polarizing power (Z/r) among different metal cations, it was concluded that Ln−F interaction is weaker than that between transition metal and F ions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号