首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3796篇
  免费   827篇
  国内免费   463篇
化学   1469篇
晶体学   59篇
力学   197篇
综合类   58篇
数学   908篇
物理学   2395篇
  2024年   8篇
  2023年   56篇
  2022年   172篇
  2021年   138篇
  2020年   139篇
  2019年   116篇
  2018年   113篇
  2017年   188篇
  2016年   195篇
  2015年   165篇
  2014年   299篇
  2013年   304篇
  2012年   289篇
  2011年   308篇
  2010年   229篇
  2009年   276篇
  2008年   266篇
  2007年   216篇
  2006年   183篇
  2005年   195篇
  2004年   164篇
  2003年   141篇
  2002年   119篇
  2001年   98篇
  2000年   95篇
  1999年   89篇
  1998年   68篇
  1997年   59篇
  1996年   71篇
  1995年   62篇
  1994年   35篇
  1993年   29篇
  1992年   28篇
  1991年   23篇
  1990年   22篇
  1989年   23篇
  1988年   14篇
  1987年   13篇
  1986年   7篇
  1985年   9篇
  1984年   14篇
  1983年   7篇
  1982年   8篇
  1981年   12篇
  1980年   6篇
  1979年   5篇
  1978年   5篇
  1977年   2篇
  1974年   1篇
  1959年   1篇
排序方式: 共有5086条查询结果,搜索用时 46 毫秒
151.
In this study, alleviation of ion suppression effect in sonic spray ionization mass spectrometry (SSI‐MS) was investigated. Ion suppression effect was firstly compared between electrospray ionization (ESI) and conventional SSI, and more severe ion suppression effect was observed with SSI. Ion suppression effect of SSI was also found difficult to be alleviated by simply optimizing major parameters. Alternatively, we found that with the assistance of an alternating current (AC) voltage with low amplitude, the ion suppression effect was greatly alleviated (comparable with conventional ESI). That AC voltage was applied outside the SSI spray tip, and no direct contact between the electrode and spray solution was necessary. Besides the alleviation of the ion suppression effect, this newly‐developed method, termed as induced electrosonic spray ionization (IESSI), appeared to preserve similar charge state distribution with SSI for protonated cytochrome c, hemoglobin, and bradykinin. IESSI could also obtain significantly improved ion intensities (~1000‐fold over conventional SSI). In addition, tolerance of concentrated salts for IESSI‐MS was investigated through the analysis of cytochrome c in the presence of concentrated sodium chloride (NaCl) or ammonium acetate (NH4OAc). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
152.
通过掺杂吸收光谱在可见光波段的量子点可提高聚合物对可见光的吸收,因此掺杂CdSe/ZnS核-壳结构量子点(CQDs)能提高聚(3-己基噻吩):[6,6]-苯基-C61-丁酸甲酯(P3HT:PCBM)体异质结太阳电池的能量转换效率.本文研究了CdSe/ZnS量子点在P3HT:PCBM中的不同掺杂比例及其表面配体对太阳电池光伏性能的影响,优化器件ITO(氧化铟锡)/PEDOT:PSS(聚(3,4-乙撑二氧噻吩:聚苯乙烯磺酸)/P3HT:PCBM:(CdSe/ZnS)/Al的能量转换效率达到了3.99%,与相同条件下没有掺杂量子点的参考器件ITO/PEDOT:PSS/P3HT:PCBM/Al相比,其能量转换效率提高了45.1%.  相似文献   
153.
针对镧系元素钕,本文通过循环伏安、开路计时电位、方波伏安等方法研究了773 K时Nd(III)在钼电极上在LiCl-KCl-ZnCl2熔盐体系中的电化学行为及Zn-Nd合金的形成过程.结果表明:在LiCl-KCl-ZnCl2熔盐中,Nd(III)在预先沉积的Zn阴极上欠电位沉积形成三种Zn-Nd金属间化合物.基于电化学行为研究,采用恒电位电解提取Nd并用方波伏安曲线测量来检测Nd(III)离子浓度的变化,然后通过电解前后Nd(III)离子浓度变化评估了Nd的电解提取效率.实验结果表明:-1.84 V恒电位电解进行50 h后,Nd(III)离子浓度接近于零,提取效率为99.67%.在973 K时通过恒电流电解提取Nd并获得了Zn-Nd合金,通过X射线衍射(XRD)和扫描电子显微镜(SEM)附带能量散射谱(EDS)对合金的相组成和微观形貌进行了分析.XRD分析表明在Zn-Nd合金中存在Nd2Zn17,LiZn和Zn相,EDS能谱分析表明Nd在合金中的原子分数高达14.99%.  相似文献   
154.
为了提高量子点敏化纳晶薄膜太阳能电池的光电转换效率,我们通过连续在酸和多硫溶液中处理铅片制备了对多硫电解液具有高电催化活性的硫化铅电极.通过电化学阻抗谱测试评价所制备硫化铅电极的催化活性,从而确定制备高效硫化铅电极的最佳条件.以在最佳条件下制备的硫化铅为对电极、CdSe量子点敏化TiO2纳晶薄膜为工作电极和多硫电解液组装成量子点敏化太阳能电池.光电性能测试结果表明所制备的电极具有良好的催化活性和光电转换性能.与已报导的方法相比,新方法大幅度地减少制备过程所需的时间,但却提高了所制备的硫化铅对电极的催化活性.通过X射线衍射和扫描电镜测试表征了硫化铅的生成过程,探讨了催化活性提高的原因.  相似文献   
155.
将Alq3[tris(8-hydroxyquinoline)aluminium]和Eu(TTA)3phen(TTA=thenoyltrifluoroacetone,phen=1,10-phenanthroline)共掺杂进入主体材料CBP(4,4′-N,N′-dicarbazole-biphenyl)中,我们制作并研究了一系列电致发光器件。经过优化Alq3的掺杂浓度,在不改变色纯度的情况下,器件的效率滚降被大幅降低并获得了近乎加倍的最大亮度。发光层中的Alq3分子不仅促进了电子的注入和传输,还延缓了空穴的传输。借助电致发光光谱,我们证实Alq3分子作为阶梯加速空穴从CBP分子到Eu(TTA)3phen分子的迁移,从而促进了电子和空穴在Eu(TTA)3phen分子上的平衡。因此,我们认为器件的效率滚降受到抑制的原因有两点:一是复合区间的加宽,二是Eu(TTA)3phen分子上空穴和电子的分布更加平衡。  相似文献   
156.
马丽  唐涛 《高分子科学》2014,32(6):731-742
Three-arm and four-arm star-like polybutadienes(PBds) were synthesized via the combination of living anionic polymerization and the click coupling method. Kinetic study showed that the click reaction between the azido group terminated PBd-t-N3 and the alkyne-containing multifunctional linking reagent was fast and highly efficient. All coupling reactions were fully accomplished within 40 min at 50 °C in toluene in the presence of the reducing agent Cu(0), proven by 1H-NMR, FTIR and GPC measurements. For the coupling reactions between the PBd-t-N3 polymer and dialkyne-containing compound, the final conversion of the coupled PBd-PBd polymer was ca. 97.0%. When a PBd-t-N3 polymer was reacted with trialkyne-containing or tetraalkyne-containing compound, the conversion of three-arm or four-arm PBd was around 95.5% or 87.0%, respectively. Several factors influencing the coupling efficiency were studied, including the molecular weight of the initial PBd-t-N3, arm numbers and the molar ratio of the azido group to the alkynyl group. The results indicated that the conversion of the target products would be promoted when the molecular weight of the PBd-t-N3 was low and the molar ratio of the azido to alkynyl groups was close to 1.  相似文献   
157.
A non-conjugated polymer acceptor PF1-TS4 was firstly synthesized by embedding a thioalkyl segment in the mainchain, which shows excellent photophysical properties on par with a fully conjugated polymer, with a low optical band gap of 1.58 eV and a high absorption coefficient >105 cm−1, a high LUMO level of −3.89 eV, and suitable crystallinity. Matched with the polymer donor PM6, the PF1-TS4-based all-PSC achieved a power conversion efficiency (PCE) of 8.63 %, which is ≈45 % higher than that of a device based on the small molecule acceptor counterpart IDIC16. Moreover, the PF1-TS4-based all-PSC has good thermal stability with ≈70 % of its initial PCE retained after being stored at 85 °C for 180 h, while the IDIC16-based device only retained ≈50 % of its initial PCE when stored at 85 °C for only 18 h. Our work provides a new strategy to develop efficient polymer acceptor materials by linkage of conjugated units with non-conjugated thioalkyl segments.  相似文献   
158.
Nonmetal cation (NMC) pentaborate structures were synthesized using the amino acid molecules as cations precursors. Chemical composition analysis, infrared spectroscopy, mass analysis, boron nuclear magnetic resonance, and thermal gravimetric analysis (TGA/DTA) methods were used for structural characterization. The hydrogen storage efficiency of molecules was also determined experimentally. The recorded infrared spectra support the structural similarities of the molecules. Stretchings of pentaborate rings and characteristic peaks of amino acids were detected in infrared spectra. When the thermal analysis curves were recorded, it was found that the structures showed similar decomposition steps. Due to the result of thermal decay, glassy boron oxide (B2O3) formation was observed as the final decomposition products of all molecules. Peaks associated with boric acid, triborate, and pentaborate were observed in the 11B spectra of these salts. Powder X-ray diffraction spectroscopy supports the presence of BO3 and BO4 groups regarding the presence of pentaborate rings. It also indicates the high crystallinity of the structures. The molecular cavities detected by brunauer–emmett–teller analysis were found to be 3.586, 1.922, 1.673, and 1.923 g/cm3. Low-molecular cavities can be attributed to the high hydrogen-bonding capacity of the structures. The hydrogen capture efficiency of the pentaborate salts was found to be in the range of 0.039-0.  相似文献   
159.
A novel three-dimensional (3D) d-f heterometallic metal-organic framework (MOF) formulated as [EuCd1.5L2(H2O)3] · 2H2O ( 1 ) [H3L = 5-(4-(tetrazol-5-yl)phenyl)isophthalic acid] was successfully synthesized and characterized. Structural analysis displays that 1 features a 3D (3, 12)-connected framework constructed by [Eu2Cd3(tetrazole)4(COO)8] units. The powder X-ray diffraction measurement of 1 immersed in different solvents reveals that 1 possess good solvent stability. It is worth noting that 1 displays highly selective detection for ronidazole (RDZ) and 4-nitrophenol (4-NP) through luminescence quenching. The possible mechanism of luminescent sensing is also well discussed.  相似文献   
160.
Optogenetics is a neuromodulation technology that combines light control technology with genetic technology, thus allowing the selective activation and inhibition of the electrical activity in specific types of neurons with millisecond time resolution. Over the past several years, optogenetics has become a powerful tool for understanding the organization and functions of neural circuits, and it holds great promise to treat neurological disorders. To date, the excitation wavelengths of commonly employed opsins in optogenetics are located in the visible spectrum. This poses a serious limitation for neural activity regulation because the intense absorption and scattering of visible light by tissues lead to the loss of excitation light energy and also cause tissue heating. To regulate the activity of neurons in deep brain regions, it is necessary to implant optical fibers or optoelectronic devices into target brain areas, which however can induce severe tissue damage. Non- or minimally-invasive remote control technologies that can manipulate neural activity have been highly desirable in neuroscience research. Upconversion nanoparticles (UCNPs) can emit light with a short wavelength and high frequency upon excitation by light with a long wavelength and low frequency. Therefore, UCNPs can convert low-frequency near-infrared (NIR) light into high-frequency visible light for the activation of light-sensitive proteins, thus indirectly realizing the NIR optogenetic system. Because NIR light has a large tissue penetration depth, UCNP-mediated optogenetics has attracted significant interest for deep-tissue neuromodulation. However, in UCNP-mediated in vivo optogenetic experiments, as the up-conversion efficiency of UCNPs is low, it is generally necessary to apply high-power NIR light to obtain up-converted fluorescence with energy high enough to activate a photosensitive protein. High-power NIR light can cause thermal damage to tissues, which seriously restricts the applications of UCNPs in optogenetic technology. Therefore, the exploration of strategies to increase the up-conversion efficiency, fluorescence intensity, and biocompatibility of UCNPs is of great significance to their wide applications in optogenetic systems. This review summarizes recent developments and challenges in UCNP-mediated optogenetics for deep-brain neuromodulation. We firstly discuss the correspondence between the parameters of UCNPs and employed opsins in optogenetic experiments, which mainly include excitation wavelengths, emission wavelengths, and luminescent lifetimes. Thereafter, we introduce the methods to enhance the conversion efficiency of UCNPs, including optimizing the structure of UCNPs and modifying the organic dyes in UCNPs. In addition, we also discuss the future opportunities in combining UCNP-mediated optogenetics with flexible microelectrode technology for the long-term detection and regulation of neural activity in the case of minimal injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号