首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   662篇
  免费   64篇
  国内免费   37篇
化学   284篇
晶体学   23篇
力学   88篇
综合类   2篇
数学   31篇
物理学   335篇
  2024年   3篇
  2023年   10篇
  2022年   28篇
  2021年   21篇
  2020年   18篇
  2019年   24篇
  2018年   18篇
  2017年   26篇
  2016年   27篇
  2015年   35篇
  2014年   49篇
  2013年   66篇
  2012年   39篇
  2011年   53篇
  2010年   28篇
  2009年   49篇
  2008年   32篇
  2007年   43篇
  2006年   34篇
  2005年   29篇
  2004年   17篇
  2003年   23篇
  2002年   19篇
  2001年   6篇
  2000年   10篇
  1999年   12篇
  1998年   5篇
  1997年   4篇
  1996年   9篇
  1995年   7篇
  1994年   6篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有763条查询结果,搜索用时 187 毫秒
101.
Living Micrococcus luteus (M. luteus) and Escherichia coli (E. coli) are encapsulated in poly(vinyl alcohol), poly(vinylpyrrolidone), hydroxypropyl cellulose, and gelatin by high‐temperature spray drying. The challenge is the survival of the bacteria during the standard spray‐drying process at temperatures of 150 °C (M. luteus) and 120 °C (E. coli). Raman imaging and transmission electron microscopy indicate encapsulated bacteria in hollow composite microparticles. The versatility of the spray‐dried polymer bacteria microparticles is successfully proved by standard polymer solution–processing techniques such as electrospinning, even with harmful solvents, to water‐insoluble polyacrylonitrile, polystyrene, poly(methyl methacrylate), and poly(vinyl butyrate) nanofiber nonwovens, which opens numerous new opportunities for novel applications.  相似文献   
102.
Thin cuprous oxide films have been prepared by chemical vapor deposition (pulsed spray evaporation-chemical vapor deposition) method without post-treatment. The synthesis ofcuprous oxide was produced by applying a water strategy effect. Then, the effect of water on the morphology, topology, structure, optical properties and surface composition of the obtained films has been comprehensively investigated. The results reveal that a pure phase of Cu2O was obtained. The introduction of a small quantity of water in the liquid feedstock lowers the band gap energy from 2.16 eV to 2.04 eV. This finding was mainly related to the decrease of crystallite size due to the effect of water. The topology analyses, by using atomic force microscope, also revealed that surface roughness decreases with water addition, namely more uniform covered surface. Moreover, theoretical calculations based on density functional theory method were performed to understand the adsorption and reaction behaviors of water and ethanol on the Cu2O thin film surface. Formation mechanism of the Cu2O thin film was also suggested and discussed.  相似文献   
103.
Thin films of indium oxide, In2O3, were deposited by chemical spray pyrolysis technique, using aqueous alcoholic solutions of indium acetylacetonate (In-acac) precursor, on glass substrates kept at temperatures between 300 and 500 °C. The structural, optical, and electrical properties have been investigated as a function of deposition temperature, precursor concentration, carrier gas pressure, and substrate-to-nozzle distance. X-ray diffraction studies showed that the formation of nanocrystalline In2O3 films is preferentially oriented along (2 2 2) plane. The surface morphological modifications with substrate temperature were observed using scanning electron and atomic force microscopic studies. Optical transmittance behavior of the films in the visible and IR region was strongly affected by the deposition parameters. The optical band gap values observed are between 3.53 and 3.68 eV. The long wavelength limit of refractive index is 1.83. The Hall mobility is found to vary from 23 to 37 cm2/V s and carrier density is found nearly constant at about 1020 cm−3.  相似文献   
104.
The three‐parameter, Generalized Gamma function solution of a recent MEF formulation used to derive liquid spray drop‐size distribution, is applied to sprays resulting from three different atomization processes. The objectives of these applications are to determine the sign of the parameters for which this function reports a more reliable fit and to further understand the parameter stability problem reported elsewhere. It is found that the lack of stability of the parameters is related to a characteristic feature of the mathematical function and appears for a series of spray drop‐size distributions with constant shape. For each situation analyzed in the present study, the Generalized Gamma function provides a very good fit with parameters that are either constant or correlated to the working conditions. As far as the sign of the parameters is concerned, the results show that the best formulation is a function of the spray and that it is impossible to know, a priori, which parameter sign will report the best fit. Finally, for one situation, it is found that the Generalized Gamma function allows extrapolation of drop sizes outside the measured values. All of the results converge to conclude that the three‐parameter Generalized Gamma function, which is identical to the well‐known Nukiyama‐Tanasawa distribution, accumulates valuable attributes to represent liquid spray drop‐size distributions.  相似文献   
105.
Nitrogen-doped ZnO films were deposited on silicon (1 0 0) substrate using zinc acetate and ammonium acetate aqueous solution as precursors by ultrasonic spray pyrolysis. Successful p-type doping can be realized at optimized substrate temperature. The p-type ZnO films show excellent electrical properties such as hole concentration of 1018 cm−3, hole mobility of 102 cm2 V−1 s−1 and resistivity of 10−2 Ω cm. In the photoluminescence measurement, a strong near-band-edge emission was observed, while the deep-level emission was almost undetectable in both undoped and N-doped ZnO films. The growth and doping mechanism of N-doped ZnO films were discussed.  相似文献   
106.
The ability to rapidly identify and quantitate, over a wide range of concentrations, anthocyanins in food and therapeutic products is important to ensuring their presence at medicinally significant levels. Sensitive, yet mild, analysis conditions are required given their susceptibility to degradation and transformation. Paper spray ionization has been used to detect and quantify the levels of anthocyanin levels in extracts of fresh and dried elderberries, and elderberry stems, as well as 3 commercially available nutraceutical formulations. The component cyanidin glucosides, including cyanidin‐3‐sambubioside, cyanidin‐3‐glucoside, cyanidin‐3,5‐diglucoside, cyanidin‐3‐sambubioside‐5‐glucoside, and the aglycone cyanidin, were readily detected in a range of sources. Quantitation was achieved by establishing a calibration plot from dilutions of a stock solution of cyanidin‐3,5‐diglucoside containing malvidin‐3,5‐diglucoside as an internal standard at a fixed concentration. The same standard was used to quantify the anthocyanin content in the fruit and nutraceutical formulations. Wide 5‐fold variations in anthocyanin concentration were detected in the nutraceutical formulations from different suppliers ranging from 1050 to 5430 mg/100 g. These concentrations compared with 500 to 2370 mg/100 g measured in the dried stems and fruit, respectively.  相似文献   
107.
This work was aimed at optimizing a protein extraction procedure for date palm (Phoenix dactylifera L.) leaves, a highly recalcitrant plant tissue for 2-DE. Five protein extraction protocols based on different protein precipitation agents (TCA/acetone vs. phenol (Ph) methods) and protein resolubilization methods (physical treatments, e.g., sonication, shaking and/or heating) were tested. Ph/SDS extraction with methanol/ammonium acetate precipitation, followed by DOC preincubation and TCA/acetone precipitation and, finally, solubilization by shaking in rehydration solution was found to be the best protein extraction method. We conclude that DOC with TCA/acetone precipitation step eliminates interfering compounds, thus allowing efficient resolubilization of date palm leaf proteins. This method could be appropriate for proteomic studies such as date palm colonization by entomopathogenic fungi.  相似文献   
108.
《印度化学会志》2023,100(1):100857
Recently, the use of CZTS as the basis for other generation of low cost thin films solar cells has stimulated further researches. Its excellent p-type absorber nature, relatively high absorption coefficient and ideal energy band-gap of 1.5eV motivated these efforts. Additionally, CZTS consist of earth-abundant, cheap and non-toxic elements with very low manufacturing cost. Initially, copper indium gallium selenide (CIGS) solar cell device emerged but suffered limitations in further development because of rare indium and gallium in the device structure therefore, CZTS is recently preferred as an alternative to CIGS commercial solar cell absorber layer. In this work, solution mixture of CZTS and PVA was deposited on a substrate at temperature of 150 °C. Sensitive spray pyrolysis was used to grow the thin films where calculated amount of the precursor mixture was allowed to fall and be deposited on a heated substrate to form CZTS/PVA thin films. Subsequently, the thin film samples were annealed at a temperature of 200oCfor 1 h to achieving pure crystalline thin film formation. SEM, XRD analysis, Optical, Solid State properties and Raman analysis were studied. The XRD analysis showed that the thin films fell into the pure kesterite structure of CZTS. Results show that produced thin films exhibited higher absorption coefficient and optical conductivity than pure CZTS, 106 m?1 and 1014(S?1) against 104cm?1 and 1012(S?1) respectively. The band-gap is between 1.53eV and 1.73eV. Using a PVA concentration of 0.05 M yielded highest absorbance and optical conductivity with lowest real dielectric constant and transmittance. These improved optical, electrical and solid state properties suitably qualify these thin films as absorber layer material for solar cell applications.  相似文献   
109.
In this investigation , Zn-Ni-Cu and Zn-Ni-Cu-TiB2 were coated on a mild steel specimen using a high velocity oxy fuel thermal spray (HVOF) process. The surface morphology and coated powder distribution of coated specimens were characterized using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray-Elemental mapping. The pin-on-disc (ASTM G99-17) method was used to examine the wear resistance of the coated and uncoated mild steel specimens. Both coated Zn-Ni-Cu and Zn-Ni-Cu-TiB2 on mild steel saw reduced wear volume loss than uncoated mild steel. The coated samples of Zn-Ni-Cu and Zn-Ni-Cu-TiB2 on Mild Steel were put through a scratch test to determine the adhesion strength of the coating with the substrate. The adhesion strength of coated Zn-Ni-Cu and Zn-Ni-Cu TiB2 mild steel was higher than that of untreated mild steel, indicating a solid link between the coating and substrate and minimal delamination. Using the Vickers hardness test to measure the hardness caused by the coating, it was shown that coated samples of Zn-Ni-Cu and Zn-Ni-Cu-TiB2 coated mild steel had significantly higher hardness than uncoated mild steel. Using ASTM G1-03 and ASTM G-31 standards, a 0.2 M HCl immersion cycle test was conducted for 28 days to test the corrosion resistance of coatings in an acidic media (672Hrs). When compared to Zn-Ni-Cu and Zn-Ni-Cu-TiB2 coated mild steel, the weight loss for the uncoated mild steel was significantly larger. Additionally, XRD examination showed that coated samples had less rust on their surface than uncoated samples. Both Zn-Ni-Cu and Zn-Ni-Cu-TiB2 on Mild Steel were anti-corrosive, as evidenced by increased corrosion potential and reduced corrosion current density when compared to uncoated mild steel, according to electrochemical impedance spectroscopy (EIS)/Tafel study in 0.2 MHCl. The outcomes of each test were very encouraging and demonstrated the durability of these coatings against wear and corrosion.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号