首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   1篇
  国内免费   1篇
化学   31篇
物理学   2篇
  2020年   2篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2012年   1篇
  2011年   7篇
  2010年   4篇
  2009年   4篇
  2008年   2篇
  2007年   3篇
  2005年   3篇
  1993年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
21.
A solvation energy relation (SERAS) has been developed for correlating the properties and (vapour + liquid) equilibrium (VLE) of associated systems capable of hydrogen bonding or dipole–dipole interaction. The model clarifies the simultaneous impact of hydrogen bonding, solubility and thermodynamic factors of activity coefficients derived from the UNIFAC-original model. The consistency test has been processed against binary VLE data for six isobaric systems of hydrogen bonding (I to III) and dipole–dipole interaction (IV to VI) types, and two isothermal systems of both types (VII and VIII). Systems II, III, and VIII show negative non-ideal deviations. The reliability analysis has been conducted on the performance of the SERAS model with 5- and 10-parameters. The model matches relatively well with the observed performance, yielding mean error of 9.7% for all the systems and properties considered.  相似文献   
22.
A linear solvation free energy relationship has been conducted to study the effects of solvent and solute properties on the free energy of solvation of inert gases and normal alkanes in different solvents. Factor analysis combined with target factor analysis was used to identify and quantify the factors controlling the variation of free energies of solvation, without the need to postulate any priori hypothetical method. Factor analysis of the solvation data revealed that there are two factors affecting the solubility of both types of gases in non‐polar as well as polar solvents. Target testing of the solvent parameters indicated that the Hildebrand solubility parameter of solvents is the major factor controlling the solubility of gases. Moreover, it was found that the coefficient of the Hildebrand solubility parameter in the linear solvation free energy equations has linear correlation with energy of vaporization and Lennard‐Jones force parameter of inert gases and number of carbon atoms and energy of vaporization of normal alkanes.  相似文献   
23.
The effect of varying mobile phase composition across a ternary space between two binary compositions is examined, on four different reversed-phase stationary phases. Examined stationary phases included endcapped C8 and C18, as well as a phenyl phase and a C18 phase with an embedded polar group (EPG). Mobile phases consisting of 50% water and various fractions of methanol and acetonitrile were evaluated. Retention thermodynamics are assessed via use of the van’t Hoff relationship, and retention mechanism is characterized via LSER analysis, as mobile phase composition was varied from 50/50/0 water/methanol/acetonitrile to 50/0/50 water/methanol acetonitrile. As expected, as the fraction of acetonitrile increases in the mobile phase, retention decreases. In most cases, the driving force for this decrease in retention is a reduction of the enthalpic contribution to retention. The entropic contribution to retention actually increases with acetonitrile content, but not enough to overcome the reduction in the enthalpic contribution. In a similar fashion, as methanol is replaced with acetonitrile, the v, e, and a LSER system constants change to favor elution, while the s and c constants change to favor retention. The b system constant did not show a monotonic change with mobile phase composition. Overall changes in retention across the mobile phase composition range varied, based on the identity of the stationary phase and the composition of the mobile phase.  相似文献   
24.
The second order rate constants of allylation of morpholine are obtained conductometrically in different protic and aprotic solvents in the temperature range 303–318K. Correlation of the rate data with different solvent parameters indicates that, the reaction rate is simultaneously influenced by the hydrogen bond donor ability (α), nucelophilicity (B) and specific polarization (π*) of the solvent. Linear multiple regression analysis results in the LSER
  相似文献   
25.
26.
Hydrogen bonding has a great impact on the partitioning of organic compounds in biological and environmental systems as well as on the shape and functionality of macromolecules. Electronic characteristics of single molecules, localized at the H‐bond (HB) donor site, are able to estimate the donor strength in terms of the Abraham parameter A. The quantum chemically calculated properties encode electrostatic, polarizability, and charge‐transfer contributions to hydrogen bonding. A recently introduced respective approach is extended to amides with more than one H atom per donor site, and adapted to the semi‐empirical AM1 scheme. For 451 organic compounds covering acidic ? CH, ? NH? , and ? OH groups, the squared correlation coefficient is 0.95 for the Hartree–Fock and density functional theory (B3LYP) level of calculation, and 0.84 with AM1. The discussion includes separate analyses for weak, moderate, and strong HB donors, a comparison with the performance of increment methods, and opportunities for consensus modeling through the combined use of increment and quantum chemical methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
27.
Abstract

High-performance liquid chromatography (HPLC) plays an important role in testing the pharmaceutically active compounds. In despite of the advantages of HPLC, thin-layer chromatography (TLC) retains its applicability to the different experimental tasks. The experimental conditions which allow hydrophilic interactions in the chromatographic system were tested in the HPLC and TLC systems for ivabradine, its related compounds, diltiazem and verapamil. Under the TLC conditions, retention behavior of the investigated compounds was tested on silica gel modified with cyanopropyl ligands as stationary phase and acetonitrile?+?methanol containing 25% v/v formic acid. Under the HPLC conditions, we used silica gel modified with cyanopropyl ligands as a column packing and the acetonitrile + 0.25% aqueous solution of formic acid as mobile phase. Retention behavior of the investigated analytes depending on the changing volume fractions of the mobile phase modifier was characterized both for TLC and HPLC data sets by the Soczewiński–Wachtmeister equation. Linear relationships were established between the retention coefficients characterizing the retention mechanism (RM0/m, logk0/m) and molecular properties of the investigated compounds. The Quantitative Structure Retention Relationship (QSRR) modeling was performed with the use of the stepwise multiple linear regression, in order to select molecular properties which influence retention.  相似文献   
28.
29.
This study examines the effect of temperature on the dynamic cholesterol coating of a C18 stationary phase and the effect of this coating on the retention mechanism. In general, an increase in temperature results in a decrease in the mass of cholesterol coated on the stationary phase. Typically, an increase in temperature from 25°C to 55°C results in a nearly 60% reduction in the mass of cholesterol loaded. The inclusion of temperature, along with loading solvent composition and cholesterol concentration in the loading solvent, allows for loading a targeted amount of cholesterol on the stationary phase over an order-of-magnitude range. In addition to loading studies, the retention mechanism of small non-ionizable solutes was examined on cholesterol-coated stationary phases. A van't Hoff analysis was performed to assess retention thermodynamics, while a LSER approach was used to examine retention mechanism. With 50/50 water/organic mobile phases, the addition of cholesterol results in an increase in the entropic contribution to retention, with a decrease in the enthalpic contribution. The opposite trend is seen with 40/60 water/organic mobile phases. LSER system constants are also affected by a cholesterol coating on the stationary phase, with some changing to favor elution and others changing to favor retention.  相似文献   
30.
In this study malic acid were extracted from aqueous solution by different solvents with and without trioctylamine (TOA). The TOA was dissolved in five different esters (dimethyl phthalate, dimethyl adipate, dimethyl succinate, dimethyl glutarate, and diethyl carbonate), five different alcohols (isoamyl alcohol, hexan-1-ol, octan-1-ol, nonan-1-ol, and decan-1-ol) and two different ketones (diisobutyl ketone (DIBK) and methyl isobutyl ketone (MIBK)). The results are reported as distribution coefficients (KD), loading factors (TT), stoichiometric loading factor (TS), separation factor (Sf) and extraction efficiency (E). The most effective solvent was determined as isoamyl alcohol with a distribution value coefficient of 17.811. The maximum values of equilibrium complexation constants in isoamyl alcohol for (acid:amine) (1:1) K11 and (2:1) K21 were 9.9 and 225.6, respectively. A linear solvation energy relationship (LSER) was accurately regressed to the experimental distribution coefficients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号