首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   13篇
  国内免费   15篇
化学   153篇
物理学   5篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   6篇
  2014年   11篇
  2013年   15篇
  2012年   6篇
  2011年   8篇
  2010年   11篇
  2009年   10篇
  2008年   8篇
  2007年   15篇
  2006年   4篇
  2005年   6篇
  2004年   3篇
  2003年   5篇
  2002年   5篇
  2001年   2篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1992年   2篇
排序方式: 共有158条查询结果,搜索用时 421 毫秒
121.
Preparation of temperature-sensitive core-shell composite polymer particles was carried out by seeded emulsion copolymerization of dimethylaminoethyl methacrylate and ethylene glycol dimethacrylate with submicron-sized polystyrene seed particles as core. The lower critical solution temperature (LCST) of the core-shell composite was about 35°C, while the LCST could be controlled toward higher or lower temperatures by copolymerizing the shell layer with hydrophilic/hydrophobic vinyl comonomer.  相似文献   
122.
热敏性高分子包裹的磁性微球的合成   总被引:14,自引:3,他引:14  
磁性高分子微球由于其在外加磁场作用下简单、快速易行的磁分离特性,其在细胞分离、固定化酶、靶向药物等领域的应用研究日益活跃,并显示出较好的应用前景[1].有关文献报道了制备磁性微球的不同方法[2].N 异丙基丙烯酰胺(N isopropylacryla...  相似文献   
123.
An imaging method has been developed to examine thermo responsive polymer coagulates by optical and electron microscopy. Poly-N-isopropylacrylamide (PNIPAM), poly-N-dimethylacrylamide (PDMAM) and a 1:1 PNIPAM-PDMAM copolymer were encapsulated in a gelatin matrix as coagulates above the lower critical solution temperature (LCST), and subsequently examined by optical and electron microscopy. The linear macromolecules PNIPAM and PDMAM were synthesized by chain transfer polymerization with mercaptopropionic acid (3-MPA) as chain transfer reagent. The resulting polymers have an average molar mass of ∼1800 g/mol and low polydispersity. The LCST of thermo responsive polymers is defined in pure water but can also be stimulated at lower than the phase transition temperature employing electrolytes containing inorganic salts such as (NH4)2SO4. Under such conditions the polymers show the typical thermo responsive phase transfer property in form of a visible clouding point. Gelatin was used to maintain this biphasic state by slowly adding water-softened gelatin sheets at a temperature above the LCST, followed by cooling to 3 °C in order to induce gelation. Examination of the gelatin-coagulate matrices by optical and electronic microscopy showed that PNIPAM and its copolymer (PNIPAM/PDMAM 1:1) are entrapped as globular spheres and clusters of spheres. In comparison pure PDMAM, even if it shows a clouding point, does not form typical LCST coagulates. With PNIPAM and the copolymer, micro globule formation is also possible with slow gelatin formation, without first provoking an LCST. In this particular case, the phase transition, or entropic demixing of the polymers respectively, are induced in this case by water absorption of the gelatin matrix.  相似文献   
124.
于燕生  钱人元 《中国化学》2002,20(11):1154-1161
IntroductionChainentanglementinrubberyandfluidstateofanamorphouspolymerisacharacteristicfeatureofthecon densedstateoflongchainmacromolecules .Theentangle mentconceptwasestablishedthroughstudiesofmeltvis cositybehavior,inrespecttothemolarmassdependenceof…  相似文献   
125.
We report here the polymerization of N-isopropyl acrylamide (NIPAM) via the reversible addition fragmentation chain transfer (RAFT) process. Two trithiocarbonates (S,S′-bis(α,α′-dimethyl-α″-acetic acid)-trithiocarbonate and 2-dodecylsulfanylthiocarbonylsulfanyl-2-methyl propionic acid) were used as the chain transfer agents in conjunction with 4,4′-azobis(4-cyanovaleric acid) and 2,2′azobis(2-methylpropionamidine) dihydrochloride as the initiating species. Poly(NIPAM) is a thermo-responsive polymer that has a sharp lower critical solution temperature (LCST). Herein, we investigated the aqueous solution behaviour of well defined p(NIPAM) prepared by the RAFT process as a function of molecular weight (degree of polymerization: 50, 100 and 200) and temperature. Furthermore, we examine the influence of varying concentrations of macromolecular species (neutral polyethylene glycol (Mn - 3400 g/mol) and ionic bovine serum albumin (Mn - 63 000 g/mol)) on the LCST of p(NIPAM). The aqueous solution behaviour was assessed by spectrophotometry, dynamic light scattering and surface tensiometry. The macromolecular additives was found to have a significant effect on the coil to globular transition of the lower molecular weight p(NIPAM).  相似文献   
126.
The self‐organization and resistive memory performances of a series of newly synthesized water‐soluble amphiphilic carbazole derivatives have been explored. Temperature‐dependent UV/Vis absorption spectroscopy has been conducted to study the isodesmic self‐assembly mechanism of the carbazole‐containing compounds. This class of compounds also exhibits interesting lower critical solution temperature properties, which are sensitive to concentration and ionic additives. One of the compounds has been solution‐processed and utilized as an active material in the engineering of resistive memory devices, exhibiting a switching voltage of about 3.9 V, a constant ON/OFF current ratio of 106, and a long retention time of 104 s. The present work demonstrates the versatile potential applications of water‐soluble amphiphilic carbazole‐containing compounds in supramolecular chemistry and resistive memory devices.  相似文献   
127.
Phase behavior and micellization of dextran-graft-poly(N-isopropylacrylamide)(PNIPAAm)polymers in aqueous solution are investigated in this paper using DSC and AFM methods.It is found that with the increase of grafting(G%) of the copolymers the endothermic enthalpy during the phase transition increases significantly and the transition temperature decreases slightly.The phase transition behavior of the copolymers is scanning rate dependent.Micelles are formed whenever the solution temperature is raised above the LCST of the copolymers.It is proposed that by using this thermal responsive property of the copolymers,drugs could be incorporated into the micelles without employing any organic solvent.  相似文献   
128.
129.
Temperature-responding physical hydrogels are promising materials as injectable drug delivery carriers which could hold useful bioactive materials inside the polymer networks for further controlled releases. Aimed at desired qualities at body temperature, those gel characteristics need to be adjusted carefully. In this point of view, surfactant is one of the useful molecules to be used by simple formulations without harmful chemical reactions. In this study, thermothickening of amphiphilic nonionic polyphosphazene solution is modified by anionic and cationic surfactants with different alkyl chains and counter-ions. Specified in the thermothickening system, a maximum viscosity (ηmax) and a temperature at that point (Tmax) are changed independently reflecting unique intermolecular interactions. At low concentration (1–9 mM) of the added surfactant, the ηmax is maximized at 3 mM surfactant regardless of the surfactant type while the Tmax is increased continuously along with the surfactant concentration. From a kinetic point of view, this 3 mM surfactant at the maximized ηmax reflects a polymer-dominating interaction and highly favorable polymer–surfactant interaction with a low selectivity in the surfactant type. However, the magnitude of the maximum viscosity (ηmax) is dependent on the surfactant tail, which reflects the lifetime and the strength of the hydrophobic domains of the polymer network affected by the surfactants. Meanwhile, the magnitude of the Tmax depended on the surfactant head group, which means the interfacial tension of the polymer solutions changed by the surfactants. At high concentration (10 and 30 mM) of the cationic surfactants added to the polymer solutions with two different viscosities, the cationic surfactants are supposed to interact either with the hydrophobic parts of the aggregated polymer with high viscosity or on the backbone of the less- or non-aggregated polymer with low viscosity.Ionic surfactants change the thermothickening of the amphiphilic nonionic polyphosphazene solution in a unique tail- or head-dependent way. Moreover, the concentration of the added surfactants and the association pattern of the pure polymer solutions are also crucial for the thermothickening phase behaviors. Temperature-responsive polyphosphazenes in this work exhibit unique and controllable interactions with ionic surfactants.  相似文献   
130.
Poly(N‐isopropylacrylamide‐co‐3‐(trimethoxysilyl)propyl methacrylate), P(NIPAAm‐co‐TMSPMA), copolymers with relatively high TMSPMA contents without insoluble fraction are successfully synthesized. Subsequent sol–gel reactions in both the absence and presence of tetraethyl orthosilicate lead to gels with high gel fractions. The resulting gels undergo gel collapse at 28.6–28.7 °C, i.e., below that of poly(N‐isopropylacrylamide) homopolymer of 34.3 °C. Unexpectedly, the theophylline‐loaded hybrid gels release the drug not only below but also above the gel collapse temperature (GCT) with considerable rates and released amounts of drug. Surprisingly, evaluation of the sustained release profiles by the Korsmeyer–Peppas equation indicates that the release occurs by Fickian diffusion above GCT, which can be attributed to the lack of significant drug–polymer interaction at such temperatures. These results can be widely applied for the design and utilization of TMSPMA‐based sol–gel polymer hybrids with desired release profiles of solutes below and above GCT for a variety of applications.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号