首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   0篇
化学   62篇
  2020年   2篇
  2019年   17篇
  2018年   4篇
  2017年   6篇
  2016年   1篇
  1999年   8篇
  1998年   8篇
  1997年   9篇
  1996年   5篇
  1995年   2篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
41.
42.
43.
44.
Nanoscale crystal growth control is crucial for tailoring two‐dimensional (2D) zeolites (crystallites with thickness less than two unit cells) and thicker zeolite nanosheets for applications in separation membranes and as hierarchical catalysts. However, methods to control zeolite crystal growth with nanometer precision are still in their infancy. Herein, we report solution‐based growth conditions leading to anisotropic epitaxial growth of 2D zeolites with rates as low as few nanometers per day. Contributions from misoriented surface nucleation and rotational intergrowths are eliminated. Growth monitoring at the single‐unit‐cell level reveals novel nanoscale crystal‐growth phenomena associated with the lateral size and surface curvature of 2D zeolites.  相似文献   
45.
46.
47.
48.
Developing controlled approaches for synthesizing high‐quality two‐dimensional (2D) semiconductors is essential for their practical applications in novel electronics. The application of chemical vapor transport (CVT), an old single‐crystal growth technique, has been extended from growing 3D crystals to synthesizing 2D atomic layers by tuning the growth kinetics. Both single crystalline individual flakes and continuous films of 1 L MoS2 were successfully obtained with CVT approach at low growth temperatures of 300–600 °C. The obtained 1 L MoS2 exhibits high crystallinity and comparable mobility to mechanically exfoliated samples, as confirmed by both atomic resolution microscopic imaging and electrical transport measurements. Besides MoS2, this method was also used in the growth of 2D WS2, MoSe2, Mox W1−x S2 alloys, and ReS2, thus opening up a new way for the controlled synthesis of various 2D semiconductors.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号