首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89451篇
  免费   6083篇
  国内免费   11142篇
化学   78619篇
晶体学   885篇
力学   970篇
综合类   875篇
数学   8488篇
物理学   16839篇
  2023年   782篇
  2022年   2796篇
  2021年   2707篇
  2020年   2463篇
  2019年   3343篇
  2018年   2322篇
  2017年   3113篇
  2016年   2808篇
  2015年   2633篇
  2014年   3649篇
  2013年   7187篇
  2012年   4373篇
  2011年   4971篇
  2010年   3931篇
  2009年   4787篇
  2008年   5205篇
  2007年   5624篇
  2006年   4765篇
  2005年   3960篇
  2004年   3857篇
  2003年   3333篇
  2002年   6065篇
  2001年   2606篇
  2000年   2122篇
  1999年   1697篇
  1998年   1611篇
  1997年   1272篇
  1996年   1242篇
  1995年   1172篇
  1994年   1001篇
  1993年   976篇
  1992年   963篇
  1991年   646篇
  1990年   526篇
  1989年   460篇
  1988年   441篇
  1987年   303篇
  1986年   298篇
  1985年   421篇
  1984年   322篇
  1983年   200篇
  1982年   363篇
  1981年   532篇
  1980年   473篇
  1979年   521篇
  1978年   418篇
  1977年   319篇
  1976年   284篇
  1974年   151篇
  1973年   220篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
31.
Monomeric sarcosine oxidase (mSOx) fusion with the silaffin peptide, R5, designed previously for easy protein production in low resource areas, was used in a biosilification process to form an enzyme layer electrode biosensor. mSOx is a low activity enzyme (10–20 U/mg) requiring high amounts of enzyme to obtain an amperometric biosensor signal, in the clinically useful range <1 mM sarcosine, especially since the Km is >10 mM. An amperometric biosensor model was fitted to experimental data to investigate dynamic range. mSOx constructs were designed with 6H (6×histidine) and R5 (silaffin) peptide tags and compared with native mSOx. Glutaraldehyde (GA) cross‐linked proteins retained ~5 % activity for mSOx and mSOx‐6H and only 0.5 % for mSOx‐R5. In contrast R5 catalysed biosilification on (3‐mercaptopropyl) trimethoxysilane (MPTMS) and tetramethyl orthosilicate (TMOS) particles created a ‘self‐immobilisation’ matrix retaining 40 % and 76 % activity respectively. The TMOS matrix produced a thick layer (>500 μm) on a glassy carbon electrode with a mediated current due to sarcosine in the clinical range for sarcosinemia (0–1 mM). The mSOx‐R5 fusion protein was also used to catalyse biosilification in the presence of creatinase and creatininase, entrapping all three enzymes. A mediated GC enzyme linked current was obtained with dynamic range available for creatinine determination of 0.1–2 mM for an enzyme layer ~800 nm.  相似文献   
32.
Over the past two decades, advanced materials with hollow interiors have received significant attention in materials research owing to their great application potential across a vast number of technological fields. Though with great difficulty, multi-shelled hollow metal–organic frameworks (MSHMs) have also been successfully synthesized in recent years. Herein, a rational shell-by-shell soft-templating protocol has been devised to fabricate highly uniform multi-shelled hollow cobalt-imidazole-based MOF (ZIF-67). For the first time, it has become possible to endow mesoporosity to this new type of functional material (i.e., mesoporous MOFs). When used as carrier materials in catalytic reactions, in principle, these mesoporous MSHMs with high surface area not only improve the dispersity of metal nanoparticles (NPs), but also efficiently facilitate the mass diffusion of the reactions, resulting in enhanced catalyst activity. Moreover, the obtained MSHMs/M nanocomposites serve as base-metal bifunctional catalysts for one-pot oxidation-Knoevenagel condensation cascade reaction, in which the MSHMs itself serves as a pristine active catalyst in addition to its role of catalyst support. The results demonstrate that excellent multifunctional catalysts can be achieved via preparing intrinsically microporous bulk MOFs into extrinsically mesoporous MSHMs which possess many structural merits that conventional bulk MOFs do not have.  相似文献   
33.
The complex interplay of restricted mass transport leading to local accumulation or depletion of educts, intermediates, products, counterions and co-ions influences the reactions at the active sites of electrocatalysts when electrodes are rough, three-dimensionally mesoporous or nanoporous. This influence is important with regard to activity, and even more to selectivity, of electrocatalytic reactions. The underlying principles are discussed based on the growing awareness of these considerations over recent years.  相似文献   
34.
35.
The kinetics of the O3, OH and NO3 radical reactions with diazomethane were studied in smog chamber experiments employing long-path FTIR and PTR-ToF-MS detection. The rate coefficients were determined to be k CH2NN+O3?=?(3.2?±?0.4)?×?10?17 and k CH2NN+OH?=?(1.68?±?0.12)?×?10?10 cm3 molecule?1 s?1 at 295?±?3?K and 1013?±?30 hPa, whereas the CH2NN?+?NO3 reaction was too fast to be determined in the static smog chamber experiments. Formaldehyde was the sole product observed in all the reactions. The experimental results are supported by CCSD(T*)-F12a/aug-cc-pVTZ//M062X/aug-cc-pVTZ calculations showing the reactions to proceed exclusively via addition to the carbon atom. The atmospheric fate of diazomethane is discussed.  相似文献   
36.
A uniform dispersion of reactants is necessary to achieve a complete reaction involving multicomponents. In this study, we have examined the role of plasticizer in the reaction of two seemingly unlikely reactants: a highly crystalline hexamethylenetetramine (HMTA) and a strongly hydrogen bonded phenol formaldehyde resin. By combining information from NMR, infrared spectroscopy and differential scanning calorimetry, we were able to determine the role of specific intermolecular interactions necessary for the plasticizer to dissolve the highly crystalline HMTA and to plasticize the phenol formaldehyde resin in this crosslinking reaction. The presence of the plasticizer increased the segmental mobility, disrupted the hydrogen bonded matrix, and freed the hydroxyl units, which further increased the solubility of the HMTA. Both the endothermic and exothermic transitions are accounted for in the calorimetric data obtained. For the first time, it is possible to obtain the effective molar ratio of each component needed to complete the crosslinking reaction efficiently. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1519–1526  相似文献   
37.
Multidrug resistance protein-4 (MRP4) belongs to the ABC transporter superfamily and promotes the transport of xenobiotics including drugs. A non-synonymous single nucleotide polymorphisms (nsSNPs) in the ABCC4 gene can promote changes in the structure and function of MRP4. In this work, the interaction of certain endogen substrates, drug substrates, and inhibitors with wild type-MRP4 (WT-MRP4) and its variants G187W and Y556C were studied to determine differences in the intermolecular interactions and affinity related to SNPs using protein threading modeling, molecular docking, all-atom, coarse grained, and umbrella sampling molecular dynamics simulations (AA-MDS and CG-MDS, respectively). The results showed that the three MRP4 structures had significantly different conformations at given sites, leading to differences in the docking scores (DS) and binding sites of three different groups of molecules. Folic acid (FA) had the highest variation in DS on G187W concerning WT-MRP4. WT-MRP4, G187W, Y556C, and FA had different conformations through 25 ns AA-MD. Umbrella sampling simulations indicated that the Y556C-FA complex was the most stable one with or without ATP. In Y556C, the cyclic adenosine monophosphate (cAMP) and ceefourin-1 binding sites are located out of the entrance of the inner cavity, which suggests that both cAMP and ceefourin-1 may not be transported. The binding site for cAMP and ceefourin-1 is quite similar and the affinity (binding energy) of ceefourin-1 to WT-MRP4, G187W, and Y556C is greater than the affinity of cAMP, which may suggest that ceefourin-1 works as a competitive inhibitor. In conclusion, the nsSNPs G187W and Y556C lead to changes in protein conformation, which modifies the ligand binding site, DS, and binding energy.  相似文献   
38.
Doxorubicin (DOX), a recognized anticancer drug, forms stable associations with carbon nanotubes (CNTs). CNTs when properly functionalized have the ability to anchor directly in cancerous tumors where the release of the drug occurs thanks to the tumor slightly acidic pH. Herein, we study the armchair and zigzag CNTs with Stone–Wales (SW) defects to rank their ability to encapsulate DOX by determining the DOX-CNT binding free energies using the MM/PBSA and MM/GBSA methods implemented in AMBER16. We investigate also the chiral CNTs with haeckelite defects. Each haeckelite defect consists of a pair of square and octagonal rings. The armchair and zigzag CNT with SW defects and chiral nanotubes with haeckelite defects predict DOX-CNT interactions that depend on the length of the nanotube, the number of present defects and nitrogen doping. Chiral nanotubes having two haeckelite defects reveal a clear dependence on the nitrogen content with DOX-CNT interaction forces decreasing in the order 0N > 4N > 8N. These results contribute to a further understanding of drug-nanotube interactions and to the design of new drug delivery systems based on CNTs.  相似文献   
39.
The discharge of diverse pollutants has led to a complex water environment and posed a huge health threat to humans and animals. Self-propelled micromotors have recently attracted considerable attention for efficient water remediation due to their strong localized mass transfer effect. However, a single functionalized component is difficult to tackle with multiple contaminants and requires to combine different decontamination effects together. Here, we introduced a multifunctional micromotor to implement the adsorption and degradation roles simultaneously by integrating the poly(aspartic acid) (PASP) adsorbent with a MnO2-based catalyst. The as-prepared micromotors are well propelled in contaminated waters by MnO2 catalyzing hydrogen peroxide. In addition, the catalytic ramsdellite MnO2(R-MnO2) inner layer is decorated with Fe2O3 nanoparticles to improve their catalytic performance, contributing to an excellent degradation ability with 90% tetracycline (TC) removal in 50 minutes by enhanced Fenton-like reactions. Combining the attractive adsorption capability of poly (aspartic acid) (PASP), the composite micromotors offer an efficient removal of heavy metal ions in short time. Moreover, the designed micromotors are able to simultaneously remove antibiotic and heavy metals in mixed contaminants circumstance just in single treatment. This multifunctional micromotor with distinctive decontamination ability exhibits a promising prospective in treating multiple pollutants in the future.  相似文献   
40.
We consider the large sparse symmetric linear systems of equations that arise in the solution of weak constraint four‐dimensional variational data assimilation, a method of high interest for numerical weather prediction. These systems can be written as saddle point systems with a 3 × 3 block structure but block eliminations can be performed to reduce them to saddle point systems with a 2 × 2 block structure, or further to symmetric positive definite systems. In this article, we analyse how sensitive the spectra of these matrices are to the number of observations of the underlying dynamical system. We also obtain bounds on the eigenvalues of the matrices. Numerical experiments are used to confirm the theoretical analysis and bounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号