首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12376篇
  免费   1123篇
  国内免费   3185篇
化学   12874篇
晶体学   255篇
力学   117篇
综合类   44篇
数学   19篇
物理学   3375篇
  2024年   32篇
  2023年   228篇
  2022年   397篇
  2021年   444篇
  2020年   629篇
  2019年   457篇
  2018年   403篇
  2017年   551篇
  2016年   593篇
  2015年   557篇
  2014年   666篇
  2013年   1004篇
  2012年   781篇
  2011年   932篇
  2010年   683篇
  2009年   829篇
  2008年   752篇
  2007年   869篇
  2006年   749篇
  2005年   672篇
  2004年   578篇
  2003年   549篇
  2002年   395篇
  2001年   348篇
  2000年   355篇
  1999年   328篇
  1998年   305篇
  1997年   260篇
  1996年   234篇
  1995年   203篇
  1994年   171篇
  1993年   166篇
  1992年   141篇
  1991年   103篇
  1990年   70篇
  1989年   55篇
  1988年   51篇
  1987年   29篇
  1986年   24篇
  1985年   24篇
  1984年   7篇
  1983年   5篇
  1982年   12篇
  1981年   10篇
  1980年   10篇
  1979年   5篇
  1978年   3篇
  1977年   3篇
  1973年   4篇
  1968年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
New biodegradable/biocompatible ABC block copolymers, poly(ethylene oxide)‐b‐poly(glycidol)‐b‐poly(L ,L ‐lactide) (PEO‐PGly‐PLLA), were synthesized. First, PEO‐b‐poly(1‐ethoxyethylglycidol)‐b‐PLLA was synthesized by a successive anionic ring‐opening copolymerization of ethylene oxide, 1‐ethoxyethylglycidyl ether, and L ,L ‐lactide initiated with potassium 2‐methoxyethanolate. In the second step, the 1‐ethoxyethyl blocking groups of 1‐ethoxyethylglycidyl ether were removed at weakly acidic conditions leaving other blocks intact. The resulting copolymers were composed of hydrophilic and hydrophobic segments joined by short polyglycidol blocks with one hydroxyl group in each monomeric unit. These hydroxyl groups may be used for further copolymer transformations. The PEO‐PGly‐PLLA copolymers with a molecular weight of PLLA blocks below 5000 were water‐soluble. Above the critical micellar concentration (ranging from 0.05 to1.0 g/L, depending on the composition of copolymer), copolymers formed macromolecular micelles with a hydrophobic PLLA core and hydrophilic PEO shell. The diameters of the micelles were about 25 nm. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3750–3760, 2003  相似文献   
2.
Well‐defined diblock and triblock copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM) and poly(ethylene oxide) (PEO) were successfully synthesized through the reversible addition–fragmentation chain transfer polymerization of N‐isopropylacrylamide (NIPAM) with PEO capped with one or two dithiobenzoyl groups as a macrotransfer agent. 1H NMR, Fourier transform infrared, and gel permeation chromatography instruments were used to characterize the block copolymers obtained. The results showed that the diblock and triblock copolymers had well‐defined structures and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.2), and the molecular weight of the PNIPAM block in the diblock and triblock copolymers could be controlled by the initial molar ratio of NIPAM to dithiobenzoate‐terminated PEO and the NIPAM conversion. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4873–4881, 2004  相似文献   
3.
The photooxidative degradation of blends (in a full range of compositions) of amorphous poly(vinyl chloride) (PVC) with semicrystalline poly(ethylene oxide) (PEO) in the form of thin films is investigated using absorption spectroscopy (UV–visible and Fourier transform infrared) and atomic force microscopy (AFM). The amount of insoluble gel formed as a result of photocrosslinking is estimated gravimetrically. It is found that the PVC/PEO blendsí susceptibility to photooxidative degradation differs from that pure of the components and depends on the blend composition and morphology. Photoreactions such as degradation and oxidation are accelerated whereas dehydrochlorination is retarded in blends. The photocrosslinking efficiency in PVC/PEO blends is higher than in PVC; moreover, PEO is also involved in this process. AFM images showing the lamellar structure of semicrystalline PEO in the blend lead to the conclusion that the presence of PVC does not disturb the crystallization process of PEO. The changes induced by UV irradiation allow the observation of more of the distinct PEO crystallites. This is probably caused by recrystallization of short, more mobile chains in degraded PEO or by partial removal of the less stable amorphous phase from the film surface. These results confirm previous information on the miscibility of PVC with PEO. The mechanism of the interactions between the components and the blend photodegradation are discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 585–602, 2004  相似文献   
4.
The ionic strength dependence of humic acid (HA) adsorption on magnetite (Fe3O4) was investigated at pH 5, 8 and 9, where variable charged magnetite is positive, neutral and negative, respectively. The adsorption studies revealed that HA has high affinity to magnetite surface especially at lower pH, where interacting partners have opposite charges. However, in spite of electrostatic repulsion at pH 9 notable amounts of humate are adsorbed. Increasing ionic strength enhances HA adsorption at each pH due to charge screening. The dominant interaction is probably a ligand-exchange reaction, nevertheless the Coulombic contribution to the organic matter accumulation on oxide surface is also significant under acidic condition. The results from size exclusion chromatography demonstrate that the smaller size HA fractions enriched with functional groups are adsorbed preferentially on the surface of magnetite at pH 8 in dilute NaCl solution.  相似文献   
5.
The effects of polymerization temperature, polymerization time, ethylene and hydrogen concentration, and effect of comonomers (hexene‐1, propylene) on the activity of supported catalyst of composition LFeCl2/MgCl2‐Al(i‐Bu)3 (L = 2,6‐bis[1‐(2,6‐dimethylphenylimino)ethyl] pyridyl) and polymer characteristics (molecular weight (MW), molecular‐weight distribution (MWD), molecular structure) have been studied. Effective activation energy of ethylene polymerization over LFeCl2/MgCl2‐Al(i‐Bu)3 has a value typical of supported Ziegler–Natta catalysts (11.9 kcal/mol). The polymerization reaction is of the first order with respect to monomer at the ethylene concentration >0.2 mol/L. Addition of small amounts of hydrogen (9–17%) significantly increases the activity; however, further increase in hydrogen concentration decreases the activity. The IRS and DSC analysis of PE indicates that catalyst LFeCl2/MgCl2‐Al(i‐Bu)3 has a very low copolymerizing ability toward propylene and hexene‐1. MW and MWD of PE produced over these catalysts depend on the polymerization time, ethylene and hexene‐1 concentration. The activation effect of hydrogen and other kinetic features of ethylene polymerization over supported catalysts based on the Fe (II) complexes are discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5057–5066, 2007  相似文献   
6.
For low-temperature deposition of oxide films relating to Bi-Sr-Ca-Cu-O superconductors, photo-absorption and -decomposition properties were examined with respect to copper and alkaline-earth ß-diketonates. It was confirmed that all ß-diketonates examined were promising as source materials for photochemical vapour deposition (photo-CVD) using a low-pressure mercury lamp, in view of their large light absorption coefficients at wavelength 254 nm. The light irradiation was effective for the formation of highly crystalline oxide films at temperatures below 600 °C. By combining two sources, Ca2CuO3 and SrCuO2 films were prepared. Photo-CVD of c-axis oriented Bi2Sr2CuOx film was achieved by the irradiation of ternary sources of Bi(C6H5)3 and strontium and copper ß-diketonates at 500 °C.  相似文献   
7.
A series of nitrosyl complexes of empirical formula Kn[M(CN)5NO], where M = V, Cr, Mn and Co and n = 3, or M = Mo and n = 4, have been prepared which are notional analogues of the widely used vasodilator sodium nitroprusside. Their reactivity towards common nucleophiles (OH?, NH2R, NHR2, HS? and RS?), acid and photolysis has been investigated to elucidate the desired properties required of new metal nitrosyls which may have some potential as new non-cyanide-based vasodilators.  相似文献   
8.
Humans are exposed via air, water and food to a number of different arsenic compounds, the physical, chemical, and toxicological properties of which may vary considerably. In people eating much fish and shellfish the intake of organic arsenic compounds, mainly arsenobetaine, may exceed 1000 μg As per day, while the average daily intake of inorganic arsenic is in the order of 10–20 μg in most countries. Arsenobetaine, and most other arsenic compounds in food of marine origin, e.g. arsenocholine, trimethylarsine oxide and methylarsenic acids, are rapidly excreted in the urine and there seem to be only minor differences in metabolism between animal species. Trivalent inorganic arsenic (AsIII) is the main form of arsenic interacting with tissue constituents, due to its strong affinity for sulfhydryl groups. However, a substantial part of the absorbed AsIII is methylated in the body to less reactive metabolities, methylarsonic acid (MMA) and dimethylarsinic acid (DMA), which are rapidly excreted in the urine. All the different steps in the arsenic biotransformation in mammals have not yet been elucidated, but it seems likely that the methylation takes place mainly in the liver by transfer of methyl groups from S-adenosylmethionine to arsenic in its trivalent oxidation state. A substantial part of absorbed arsenate (AsV) is reduced to AsIII before being methylated in the liver. There are marked species differences in the methylation of inorganic arsenic. In most animal species DMA is the main metabolite. Compared with human subjects, very little MMA is produced. The marmoset monkey is the only species which has been shown unable to methylate inorganic arsenic. In contrast to other species, the rat shows a marked binding of DMA to the hemoglobin, which results in a low rate of urinary excretion of arsenic.  相似文献   
9.
Segmented block copolymers based on poly(ethylene oxide) (PEO) flexible segments and monodisperse crystallizable bisester tetra‐amide segments were made via a polycondensation reaction. The molecular weight of the PEO segments varied from 600 to 4600 g/mol and a bisester tetra‐amide segment (T6T6T) based on dimethyl terephthalate (T) and hexamethylenediamine (6) was used. The resulting copolymers were melt‐processable and transparent. The crystallinity of the copolymers was investigated by differential scanning calorimetry (DSC) and Fourier Transform infrared (FTIR). The thermal properties were studied by DSC, temperature modulated synchrotron small angle X‐ray scattering (SAXS), and dynamic mechanical analysis (DMA). The elastic properties were evaluated by compression set (CS) test. The crystallinity of the T6T6T segments in the copolymers was high (>84%) and the crystallization fast due to the use of monodisperse tetra‐amide segments. DMA experiments showed that the materials had a low Tg, a broad and almost temperature independent rubbery plateau and a sharp flow temperature. With increasing PEO length both the PEO melting temperature and the PEO crystallinity increased. When the PEO segment length was longer than 2000 g/mol the PEO melting temperature was above room temperature and this resulted in a higher modulus and in higher compression set values at room temperature. The properties of PEO‐T6T6T copolymers were compared with similar poly(propylene oxide) and poly(tetramethylene oxide) copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4522–4535, 2007  相似文献   
10.
Fine powders of lanthanum iron oxide, LaFeO3, have been prepared by solid state reaction as well as sol-gel synthesis and nebulized spray pyrolysis. Structures, morphologies and magnetic susceptibility measurements of these powders have been examined. The powders prepared by all the three low-temperature routes contain nearly spherical particles with an average diameter of 40 nm. These samples show a lower Neel temperature than the powder prepared by solid state reaction besides showing much lower magnetic susceptibility at low temperatures. Dedicated to Professor C N R Rao on his 70th birthday  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号