全文获取类型
收费全文 | 1636篇 |
免费 | 59篇 |
国内免费 | 222篇 |
专业分类
化学 | 1514篇 |
晶体学 | 50篇 |
力学 | 22篇 |
综合类 | 10篇 |
数学 | 62篇 |
物理学 | 259篇 |
出版年
2024年 | 2篇 |
2023年 | 23篇 |
2022年 | 44篇 |
2021年 | 55篇 |
2020年 | 37篇 |
2019年 | 36篇 |
2018年 | 31篇 |
2017年 | 61篇 |
2016年 | 67篇 |
2015年 | 47篇 |
2014年 | 63篇 |
2013年 | 131篇 |
2012年 | 97篇 |
2011年 | 71篇 |
2010年 | 72篇 |
2009年 | 72篇 |
2008年 | 69篇 |
2007年 | 84篇 |
2006年 | 76篇 |
2005年 | 55篇 |
2004年 | 85篇 |
2003年 | 50篇 |
2002年 | 69篇 |
2001年 | 60篇 |
2000年 | 53篇 |
1999年 | 67篇 |
1998年 | 48篇 |
1997年 | 26篇 |
1996年 | 32篇 |
1995年 | 27篇 |
1994年 | 33篇 |
1993年 | 30篇 |
1992年 | 20篇 |
1991年 | 16篇 |
1990年 | 13篇 |
1989年 | 12篇 |
1988年 | 10篇 |
1987年 | 14篇 |
1986年 | 7篇 |
1985年 | 11篇 |
1984年 | 7篇 |
1983年 | 5篇 |
1982年 | 7篇 |
1981年 | 5篇 |
1980年 | 5篇 |
1979年 | 2篇 |
1978年 | 1篇 |
1977年 | 4篇 |
1976年 | 1篇 |
1973年 | 4篇 |
排序方式: 共有1917条查询结果,搜索用时 15 毫秒
101.
102.
Summary In this paper an application is presented of the median molecule workflow to the de novo design of novel molecular entities with a property profile of interest. Median molecules are structures that are optimised to be similar to a set of existing molecules of interest as an approach for lead exploration and hopping. An overview of this workflow is provided together with an example of an instance using the similarity to camphor and menthol as objectives. The methodology of the experiments is defined and the workflow is applied to designing novel molecules for two physical property datasets: mean molecular polarisability and aqueous solubility. This paper concludes with a discussion of the characteristics of this method. 相似文献
103.
Saeed?Rastegar Naser?MohammadiEmail author Reza?Bagheri 《Colloid and polymer science》2004,283(2):145-153
The morphology of a quaternary blend containing a diglycidyl ether of bisphenol-A (DGEBA), a thermoplastic modifier (PMMA), a phase-separating curing agent (diaminodiphenylmethane, DDM), and a non-phase-separating curing agent (methylenebis(3-chloro-2,6-diethylaniline, MCDEA) was studied as a function of volume fraction of the thermoplastic modifier and fractional concentration of the curing agents in their mixture. It was found that using mixtures of curing agents a co-continuous morphology could be obtained at PMMA concentrations as low as 2.5 volume percent. Using FTIR spectroscopy it was proved that specific interactions are present between PMMA and individual amine curing agents. On the other hand, there was no detectable specific interaction between PMMA and DGEBA. By analyzing the micro-indentation hardness data of the cryo-fractured samples and putting forward the intrinsic hardness concept, it was proposed that the co-continuous morphology is inherently more effective than the other morphologies in changing the mechanical properties of the above-mentioned multi-component blends. 相似文献
104.
Cline Schneider Frdric Doucet Stanislav Strekopytov Christopher Exley 《Polyhedron》2004,23(18):3185-3191
Hydroxyaluminosilicates (HAS) are critical secondary mineral phases in the biogeochemical cycle of aluminium. They are formed from the reaction of silicic acid (Si(OH)4) with an aluminium hydroxide template and act as a geochemical control of the biological availability of Al. There are two main forms of HAS which we have called HASA and HASB and which of these will predominate will depend upon the Si(OH)4 to Al ratio in any one environment. In all but the most heavily weathered environments or those undergoing a progressive acidification Si(OH)4 will be present in significant excess to Al and HASB will be the dominant secondary mineral phase. We have tried to determine the solubility of HASB(s) so that its contribution to Al solubility control might be compared with other secondary minerals such as Al(OH)3(gibbsite). In preliminary experiments, the dissolution of HASB(s) was found to be non-congruent with almost no Al being released during 18 months ageing. We then demonstrated that HASB(s) was significantly less soluble than Al(OH)3(s) prepared under identical experimental conditions. We have used this information to describe a solubility expression for HASB(s) at a predefined quasi-equibrium and to calculate a solubility constant.
K*Al2Si2O5(OH)4=[Al2O4+][SiO2]2[OH-]4