首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   1篇
  国内免费   2篇
化学   150篇
晶体学   1篇
力学   2篇
物理学   7篇
  2024年   15篇
  2023年   119篇
  2022年   2篇
  2021年   1篇
  2019年   3篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2005年   2篇
  2003年   1篇
  2000年   2篇
排序方式: 共有160条查询结果,搜索用时 15 毫秒
61.
The self-assembly of porous molecular nanocapsules offer unique opportunities to investigate a range of interesting phenomena and applications. However, to design nanocapsules with pre-defined properties, thorough understanding of their structure-property relation is required. Here, we report the self-assembly of two elusive members of the Keplerate family, [Mo132Se60O312(H2O)72(AcO)30]42− {Mo132Se60} 1 and [W72Mo60Se60O312(H2O)72(AcO)30]42− {W72Mo60Se60} 2 , that have been synthesised using pentagonal and dimeric ([Mo2O2Se2]2+) building blocks and their structures have been confirmed via single crystal X-ray diffractions. Our comparative study involving the uptake of organic ions and the related ligand exchange of various ligand sizes by the {Mo132Se60} and previously reported Keplerates {Mo132O60}, {Mo132S60} based on the ligand exchange rates, revealed the emergence of increased “breathability” that dominates over the pore size as we transition from the {Mo132S60} to the “softer” {Mo132Se60} molecular nano-container.  相似文献   
62.
Multiple constituent coassembly is an emerging strategy to manipulate supramolecular chirality and chiroptical properties such as circularly polarized luminescence (CPL). However, the second or third constituent could not be removed from pristine self-assembly. Here we developed a constitute-removable chiral coassembly using sublimation that could realize coassembly with tunable supramolecular chirality, luminescence and CPL properties. Octafluoronapthalene (OFN) with small sublimation enthalpy formed coassemblies with perylene-conjugated peptoids via arene-perfluoroarene (AP) interaction that induced the emergence of macroscopic chirality and hypsochromic luminescence from yellow to green. Coassembly with OFN accelerated one-dimensional growth and induced the emergence of macroscopic chirality and CPL. Despite the stability at ambient conditions, vacuum-treatment triggered fast sublimation of OFN, which behaved as a sacrificial template. Physical removal of OFN retained the helical nanoarchitectures as well as the basic features of Cotton effects and CPL activities. X-ray diffraction suggested the back-fill consolidation occurred on the molecular voids by OFN removal that slightly varied the templated molecular arrangements. Sublimation of perfluorinated building units is green and efficient and non-destructive, which is potentially applicable in constructing template-directed chiroptical materials and devices.  相似文献   
63.
Covalent regulatory systems of enzymes are widely used to modulate biological enzyme activities. Inspired by the regulation of reactive-site phosphorylation in organisms, we developed peptide-based catecholase mimetics with switchable catalytic activity and high selectivity through the co-assembly of nanofibers comprising peptides and copper ions (Cu2+). Through careful design and modification of the peptide backbone structure based on the change in the free energy of the system, we identified the peptide with the most effective reversible catalytic activity. Kinase/phosphatase switches were used to control the reversible transition of nanofiber formation and depolymerization, as well as to modulate the active-site microenvironment. Notably, the self-assembly and disassembly processes of nanofibers were simulated using coarse-grained molecular dynamics. Furthermore, theoretical calculations confirmed the coordination of the peptide and Cu2+, forming a zipper-like four-ligand structure at the catalytically active center of the nanofibers. Additionally, we conducted a comprehensive analysis of the catalytic mechanism. This study opens novel avenues for designing biomimetic enzymes with ordered structures and dynamic catalytic activities.  相似文献   
64.
Polyoxometalate (POM) clusters with atomic precision structures are promising candidates construct functional nanomaterials via self-assembly. Non-covalent interactions at molecular levels can govern the self-assembly of POM clusters, for which the precise control of POM-based assemblies can be realized at single-cluster levels. This mini-review focuses on the synthesis and properties of POM-based nanostructures, including amphiphilic POM assemblies and co-assemblies of POM clusters and other subnanometer building blocks. Several synthetic strategies have been developed for rational control of POM-based assemblies in terms of morphologies, compositions and properties. 1D subnanometer POM assemblies demonstrate remarkable enhanced mechanical properties due to the topological interactions between nanowires and surroundings. The in-depth understanding of POM-based assemblies may help in the design of functional nanomaterials in fundamental perspectives and applications.  相似文献   
65.
The structure and properties of a range of thermotropic poly(ester-amides) derived from 2,6-naphthalene derivatives is described. Many of these polymers may be melt-processed into fibers, monofils, and molded structures having very attractive physical and mechanical properties. A variety of monomers has been used and structure/composition/property relationships are described along with details of synthesis and processing conditions. Both fibers and molded articles may be heat-treated to enhance their tensile properties. Molded articles and extruded rods have exceptional tensile moduli in the unfilled state.  相似文献   
66.
We report an unusual strategy for synthesizing patchy nanoparticles (NPs) by controlling the orientation of the molecules that form the NPs. This is realized by synchronous polymerization and crystallization of liquid crystal (LC) monomers during scalable precipitation polymerization. The resulting NPs are cylinders with highly uniform shapes and have only a single LC domain. The patchy properties originate from the discrepancy of surface chemical compositions on flat and side surfaces and can be switched on and off by solvent. Extra colloidal blocks can be grown onto the patches, resulting in highly uniform triblock patchy dumbbells, which have integrated optical properties, and as demonstrated, show triple-mode optical authentication in anti-counterfeiting labels or patterns. We also demonstrate that the triblock patchy cylinders are attractive building blocks for long LC rods or porous colloidal materials through polymerization-induced self-assembly.  相似文献   
67.
The vital role of metabolites across all branches of life and their involvement in various disorders have been investigated for decades. Many metabolites are poorly soluble in water or in physiological buffers and tend to form supramolecular aggregates. On the other hand, in the cell, they should be preserved in a pool and be readily available for the execution of biochemical functions. We thus propose that a quality-control network, termed “metabolostasis”, has evolved to regulate the storage and retrieval of aggregation-prone metabolites. Such a system should control metabolite concentration, subcellular localization, supramolecular arrangement, and interaction in dynamic environments, thus enabling normal cellular physiology, healthy development, and preventing disease onset. The paradigm-shifting concept of metabolostasis calls for a reevaluation of the traditional view of metabolite storage and dynamics in physiology and pathology and proposes unprecedented directions for therapeutic targets under conditions where metabolostasis is imbalanced.  相似文献   
68.
Chirality correction, asymmetry, ring-chain tautomerism and hierarchical assemblies are fundamental phenomena in nature. They are geometrically related and may impact the biological roles of a protein or other supermolecules. It is challenging to study those behaviors within an artificial system due to the complexity of displaying these features. Herein, we design an alternating D,L peptide to recreate and validate the naturally occurring chirality inversion prior to cyclization in water. The resulting asymmetrical cyclic peptide containing a 4-imidazolidinone ring provides an excellent platform to study the ring-chain tautomerism, thermostability and dynamic assembly of the nanostructures. Different from traditional cyclic D,L peptides, the formation of 4-imidazolidinone promotes the formation of intertwined nanostructures. Analysis of the nanostructures confirmed the left-handedness, representing chirality induced self-assembly. This proves that a rationally designed peptide can mimic multiple natural phenomena and could promote the development of functional biomaterials, catalysts, antibiotics, and supermolecules.  相似文献   
69.
Introducing a second component is an effective way to manipulate polymerization behavior. However, this phenomenon has rarely been observed in colloidal systems, such as polymeric nanoparticles. Here, we report the supramolecular polymerization of polymeric nanorods mediated by block copolymers. Experimental observations and simulation results illustrate that block copolymers surround the polymeric nanorods and mainly concentrate around the two ends, leaving the hydrophobic side regions exposed. These polymeric nanorods connect in a side-by-side manner through hydrophobic interactions to form bundles. As polymerization progresses, the block copolymers gradually deposit onto the bundles and finally assemble into helical nanopatterns on the outermost surface, which terminates the polymerization. It is anticipated that this work could offer inspiration for a general strategy of controllable supramolecular polymerization.  相似文献   
70.
Rapid cellular uptake of synthetic molecules remains a challenge, and the motif frequently employed to generate prodrugs, succinic ester, unfortunately lowers the efficacy of the desired drugs due to their slow ester hydrolysis and low cell entry. Here we show that succinic ester-containing diglycine drastically boosts the cellular uptake of supramolecular assemblies or prodrugs. Specifically, autohydrolysis of the diglycine-activated succinic esters turns the nanofibers of the conjugates of succinic ester and self-assembling motif into nanoparticles for fast cellular uptake. The autohydrolysis of diglycine-activated succinic esters and drug conjugates also restores the efficacy of the drugs. 2D nuclear magnetic resonance (NMR) suggests that a “U-turn” of diglycine favors intramolecular hydrolysis of diglycine-activated succinic esters to promote autohydrolysis. As an example of rapid autohydrolysis of diglycine-activated succinic esters for instant cellular uptake, this work illustrates a nonenzymatic bond cleavage approach to develop effective therapeutics for intracellular targeting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号