首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5161篇
  免费   554篇
  国内免费   424篇
化学   848篇
晶体学   56篇
力学   1612篇
综合类   61篇
数学   1454篇
物理学   2108篇
  2024年   15篇
  2023年   84篇
  2022年   119篇
  2021年   140篇
  2020年   193篇
  2019年   139篇
  2018年   111篇
  2017年   179篇
  2016年   192篇
  2015年   170篇
  2014年   227篇
  2013年   390篇
  2012年   191篇
  2011年   273篇
  2010年   211篇
  2009年   286篇
  2008年   343篇
  2007年   302篇
  2006年   281篇
  2005年   260篇
  2004年   247篇
  2003年   233篇
  2002年   224篇
  2001年   191篇
  2000年   187篇
  1999年   169篇
  1998年   127篇
  1997年   112篇
  1996年   91篇
  1995年   48篇
  1994年   69篇
  1993年   49篇
  1992年   41篇
  1991年   38篇
  1990年   31篇
  1989年   29篇
  1988年   31篇
  1987年   19篇
  1986年   11篇
  1985年   14篇
  1984年   17篇
  1983年   4篇
  1982年   7篇
  1981年   8篇
  1980年   5篇
  1979年   7篇
  1978年   7篇
  1977年   3篇
  1976年   4篇
  1975年   4篇
排序方式: 共有6139条查询结果,搜索用时 0 毫秒
91.
Ring strain energies (RSEs) are predicted using homodesmotic reactions at the B3LYP/6-31G* level of theory. Substituents are conserved in the acyclic reference and any difference in energy between the ring and the acyclic reference corresponds exclusively to RSE. Small rings are stabilized by alkyl substituents and this stabilization decreases as the size of the ring increases. There is a destabilization of medium sized rings. Greater stabilization is found upon alkyl substitution at a double bond in an unsaturated ring and this stabilization decreases as ring size increases. The effects of cis-1,2-disubstitution on RSEs have been evaluated and indicate stabilization for both small and medium sized rings. RSEs of saturated and unsaturated polycyclic systems agree well with the RSEs derived from experimental thermochemical data. RSEs are reported for substituted norbornanes, norbornenes, and norbornadienes to complement experimental studies.  相似文献   
92.
93.
A class II valence force field covering a broad range of organic molecules has been derived employing ab initio quantum mechanical "observables." The procedure includes selecting representative molecules and molecular structures, and systematically sampling their energy surfaces as described by energies and energy first and second derivatives with respect to molecular deformations. In this article the procedure for fitting the force field parameters to these energies and energy derivatives is briefly reviewed. The application of the methodology to the derivation of a class II quantum mechanical force field (QMFF) for 32 organic functional groups is then described. A training set of 400 molecules spanning the 32 functional groups was used to parameterize the force field. The molecular families comprising the functional groups and, within each family, the torsional angles used to sample different conformers, are described. The number of stationary points (equilibria and transition states) for these molecules is given for each functional group. This set contains 1324 stationary structures, with 718 minimum energy structures and 606 transition states. The quality of the fit to the quantum data is gauged based on the deviations between the ab initio and force field energies and energy derivatives. The accuracy with which the QMFF reproduces the ab initio molecular bond lengths, bond angles, torsional angles, vibrational frequencies, and conformational energies is then given for each functional group. Consistently good accuracy is found for these computed properties for the various types of molecules. This demonstrates that the methodology is broadly applicable for the derivation of force field parameters across widely differing types of molecular structures. Copyright 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1782-1800, 2001  相似文献   
94.
95.
Polyurethane elastomers of a controlled molecular architecture were synthesized using a two‐step polymerization technique. The building blocks of the elastomeric materials included urea–urethane prepolymers end‐capped with diisocyanate groups and had an exact number of urea groups at both ends. Two‐dimensional bifurcated hydrogen‐bonding networks incorporating the urea groups were, with differential scanning calorimetric and dynamic mechanical thermal analyzer techniques, responsible for the increase in the glass‐transition temperature (Tg) of the hard block and sharp interface morphology between the pure “hard” domains and pure “soft” domains. The higher extent of the phase separation between the two phases contributed to higher elastic moduli for the hard blocks and higher tensile strength for the elastomeric samples. Higher elongation values were attributed to the liberation of the elastomeric chain ends that otherwise would have been constrained in the interface region. The higher Tg values of the hard blocks corresponded to an increase in the hardness values and a decrease in the tear‐strength values. The increase in the amount of urea groups within the hard segments, as a result of the increased amount of water and blowing catalyst, resulted in elastomeric foams with higher open‐cell content. This resulted in lower resilience values as measured using the pendulum rebound test and was attributed to the ability of the open cells to absorb and dissipate energy. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2526–2536, 2002  相似文献   
96.
A fluoroacetate-sensitive mutant was isolated fromCorynebacterium glutamicum, ATCC 21513, following mutagenesis with NTG. Batch fermentations show that in terms of growth kinetics, glucose utilization, and lysine formation, there are significant differences between the mutant and the parent. The mutant’s specific growth rate (0.22/h) is lower than that for the parent (0.34/h). Also, the yield expressed as lysine/glucose consumed does not alter as a function of the glucose concentration for the mutant, and is about 0.22, whereas for the parent, this coefficient decreases with increasing glucose concentration. The maximum specific rate of lysine production for the mutant is 1.3 g/L/h that is about two-fold higher than that for the parent.  相似文献   
97.
98.
Chemical mass shifts were measured in a Paul ion trap operated in the mass-selective instability scan with resonance ejection using a custom-built instrument. These shifts, which can be as much as 2%, decrease with increasing endcap electrode separation owing to changes in the higher order contributions to the electric field. They also decrease with decreasing helium buffer gas pressure. Both of these effects are analogous to those found with boundary ejection. This suggests that the previously proposed chemical mass shift mechanism based on compound-dependent collisional modification of the ejection delay produced by field faults near the endcap electrode apertures holds true also for resonance ejection. The influence of the resonance frequency on chemical mass shifts was also investigated and it is shown that at certain working points (values of the Mathieu parameter q(z) and a(z)) non-linear resonances greatly reduce the ejection delay for all ions, regardless of their chemical structures, and thus reduce the magnitude of the chemical mass shift. Energetic collisions leading to dissociation can take place at an earlier stage during the ejection process in the mass analysis scan when using resonance ejection compared with boundary ejection. This leads to even larger chemical mass shifts of fragile ions in resonance ejection. Increasing the resonance voltage amplitude can enhance this effect. The chemical mass shifts of fragile ions increase with increase in the resonance voltage amplitude, whereas negligible changes occur for structurally stable ions.  相似文献   
99.
The standard molar enthalpies of formation f H m ° (l) at the temperature T = 298.15 K were determined using combustion calorimetry for N-methylpiperidine (A), N-ethylpiperidine (B), N-propylpiperidine (C), N-butylpiperidine (D), N-cyclopentylpiperidine (E), N-cyclohexylpiperidine (F), and N-phenylpiperidine (G). The standard molar enthalpies of vaporization l g H m ° of these compounds were obtained from the temperature variation of the vapor pressure measured in a flow system. From these data the following standard molar enthalpies of formation in gaseous phase f H m ° (g) were derived for: A –(61.39 ± 0.88); B –(88.1 ± 1.3); C –(105.81 ± 0.66); D –(126.2 ± 1.3); E ( –88.21 ± 0.75); F –(135.21 ± 0.94); G (70.3 ± 1.4) kJ · mol–1. They are used to determine the strain enthalpies of the cyclic amines A–G. The N-alkylated piperidine rings have been found to be about strainless.  相似文献   
100.
It is well known that, with respect to the director, nematic elastomers can be macroscopically aligned by uniaxial mechanical fields. Extending this method to a chiral smectic C elastomer, depending on the experimental set-up either smectic layer orientation or director orientation parallel to the stress axis occurs. In order to align the director and the smectic layers a biaxial mechanical field (e.g. shear field) consistent with the phase symmetry has to be used to achieve a macroscopically uniform orientation of the untwisted smectic C* structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号