排序方式: 共有15条查询结果,搜索用时 0 毫秒
11.
Speciation of chromium in waste water using ion chromatography inductively coupled plasma mass spectrometry 总被引:2,自引:0,他引:2
Ion chromatography (IC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) was systematically investigated for determining the speciation of chromium in environmental samples. Firstly, the stability of complexes formed by Cr(III) with various aminopolycarboxylic acids was studied by electrospray ionization mass spectrometry (ESI-MS). The results showed that [Cr(EDTA)]− was stable in solution. Secondly, various mobile phases were examined to separate Cl− from chromium species by IC to avoid Cl− interference. The separation of [Cr(EDTA)]− and Cr(VI) was achieved on a new anion-exchange column (G3154A/102) using a mobile phase containing 20 mM NH4NO3 and 10 mM NH4H2PO4 at pH 7.0 without Cl− interference. Detection limits for chromium species were below 0.2 μg/L with a direct injection of sample and without prior removal of interferences from the matrix. Finally, the proposed method was used for the determination of chromium species in contaminated waters. 相似文献
12.
In recent years the number of environmental applications of elemental speciation analysis using inductively coupled plasma mass spectrometry (ICP-MS) as detector has increased significantly. The analytical characteristics, such as extremely low detection limits (LOD) for almost all elements, the wide linear range, the possibility for multi-elemental analysis and the possibility to apply isotope dilution mass spectrometry (IDMS) make ICP-MS an attractive tool for elemental speciation analysis. Two methodological approaches, i.e. the combination of ICP-MS with high performance liquid chromatography (HPLC) and gas chromatography (GC), dominate the field. Besides the investigation of metals and metalloids and their species (e.g. Sn, Hg, As), representing “classic” elements in environmental science, more recently other elements (e.g. P, S, Br, I) amenable to ICP-MS determination were addressed. In addition, the introduction of isotope dilution analysis and the development of isotopically labeled species-specific standards have contributed to the success of ICP-MS in the field. The aim of this review is to summarize these developments and to highlight recent trends in the environmental application of ICP-MS coupled to GC and HPLC. 相似文献
13.
Laura Hinojosa Reyes Jorge L. Guzmán Mar G.M. Mizanur Rahman Bryan Seybert Timothy Fahrenholz H.M. Skip Kingston 《Talanta》2009,78(3):983-784
A microwave-assisted enzymatic extraction (MAEE) method was developed for the simultaneous extraction of arsenic (As) and selenium (Se) species in fish tissues. The extraction efficiency of total As and Se and the stability of As and Se species were evaluated by analyzing DOLT-3 (dogfish liver). Enzymatic extraction using pronase E/lipase mixture assisted by microwave energy was found to give satisfactory extraction recoveries for As and Se without promoting interspecies conversion. The optimum extraction conditions were found to be 0.2 g of sample, 20 mg pronase E and 5 mg lipase in 10 mL of 50 mM phosphate buffer, pH 7.25 at 37 °C. The total extraction time was 30 min. The speciation analysis was performed by ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP-MS). The accuracy of the developed extraction procedure was verified by analyzing two reference materials, DOLT-3 and BCR-627. The extraction recoveries in those reference materials ranged between 82 and 94% for As and 57 and 97% for Se. The accuracy of arsenic species measurement was tested by the analysis of BCR 627. The proposed method was applied to determine As and Se species in fish tissues purchased from a local fish market. Arsenobetaine (AsB) and selenomethionine (SeMet) were the major species detected in fish tissues. In the analyzed fish extracts, the sum of As species detected was in good agreement with the total As extracted. However, for Se, the sum of its species was lower than the total Se extracted, revealing the presence of Se-containing peptides or proteins. 相似文献
14.
Ion-pairing chromatography coupled with inductively coupled plasma mass spectrometry (ICP-MS) used for the speciation of phosphorus is limited as the mobile phase containing organic solvents changes in detection sensitivity and the carbon precipitates on torch and cones. To address this issue, anion-exchange chromatography with ICP-MS has been used for the speciation of glyphosate, phosphate and aminomethylphosphonic acid in soil extracts. The separation of the targets on a new column was achieved within 5 min using an eluent containing 20 mM NH4NO3 at pH 5.1. Furthermore, since the polyatomic ions such as 14N16O1H+ and 15N16O+ from a nitrogen-based ion-pairing reagent interfered with ICP-MS detection of 31P, an octopole reaction system was investigated to determine whether the polyatomic interferences could be reduced. The results show that addition of He to the cell can benefit analyses by reducing such interferences, but at the expense of reduced sensitivity. The detection limits in the range of 1.0-1.5 μg L−1 (expressed as P) was achieved when 50 μL was injected using He as the collusion gas. 相似文献
15.
Andreas Seubert Peter Wilhartitz Robert Krismer Hermann Krabichler 《Mikrochimica acta》1995,117(3-4):245-260
On-line coupling of inductively coupled plasma (ICP) techniques such as ICP-AES and ICP-MS with ion chromatography (IC) offers unique features for ultra-trace analysis. An on-line preconcentration procedure based on cation exchange enables sub-ng/g analysis in complex matrices like molybdenum and tungsten. The best dissolution reagent for these matrices is hydrogen peroxide, which can be cleaned to ultra high purity with the same metal free chromatography equipment used for the preconcentration. Preconcentration is possible for elements that show cationic reactions within acidic peroxide containing solutions. In this study 28 elements detrimental for microelectronics applications are observed. A comparison of the combinations IC-ICP-AES and IC-ICP-MS with glow discharge mass spectrometry (GDMS) for the analysis of today's purest tungsten samples shows the analytical power and accuracy of the coupled devices. Graphite furnace atomic absorption spectrometry (GFAAS) as an extremely sensitive analytical technique is applied with and without the same sample pretreatment as used for the on-line coupling. Direct GFAAS measurements of alkali metals are complementary to IC-ICP techniques. The data evaluated with these wet chemical techniques are compared to the usual manufacturers characterisation technique GDMS. With respect to the low concentrations present in these high purity materials (ng/g level in the solid) the discrepancies between all methods are acceptable. The sensitivity of IC-ICP-MS is in most cases far superior to IC-ICP-AES and for some elements also to GDMS. Furthermore the specific advantages of on-line coupling such as the elimination of isobaric interferences in ICP-MS or spectral interferences in ICP-AES are shown for ICP-AES and ICP-MS determinations. 相似文献