首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2793篇
  免费   285篇
  国内免费   291篇
化学   2277篇
晶体学   25篇
力学   13篇
综合类   5篇
数学   17篇
物理学   1032篇
  2023年   35篇
  2022年   75篇
  2021年   104篇
  2020年   114篇
  2019年   78篇
  2018年   72篇
  2017年   76篇
  2016年   117篇
  2015年   115篇
  2014年   92篇
  2013年   213篇
  2012年   98篇
  2011年   111篇
  2010年   103篇
  2009年   151篇
  2008年   144篇
  2007年   212篇
  2006年   182篇
  2005年   103篇
  2004年   107篇
  2003年   119篇
  2002年   116篇
  2001年   100篇
  2000年   54篇
  1999年   79篇
  1998年   68篇
  1997年   55篇
  1996年   36篇
  1995年   31篇
  1994年   30篇
  1993年   21篇
  1992年   31篇
  1991年   19篇
  1990年   24篇
  1989年   25篇
  1988年   23篇
  1987年   12篇
  1986年   27篇
  1985年   17篇
  1984年   19篇
  1983年   13篇
  1982年   14篇
  1981年   15篇
  1980年   17篇
  1979年   17篇
  1978年   12篇
  1977年   13篇
  1976年   18篇
  1975年   9篇
  1973年   13篇
排序方式: 共有3369条查询结果,搜索用时 15 毫秒
81.
82.
Quantum-chemical modeling of electronic structure and interatomic interaction parameters has been performed for a series of fullerenelike cage molecules based on the isoelectronic TiO2, SnO2, and SnS2. The above characteristics are analyzed in relation to the type of atomic configuration, as well as the size and chemical composition of a nanostructure.  相似文献   
83.
The molecular intrinsic characteristic contour (MICC) is defined as the set of all the classical turning points of electron movement in a molecule. Studies on the MICCs of some medium organic molecules, such as dimethylether, acetone, and some homologues of alkanes, alkenes, and alkynes, as well as the electron density distributions on the MICCs, are shown for the first time. Results show that the MICC is an intrinsic approach to shape and size of a molecule. Unlike the van der Waals hard-sphere model, the MICC is a smooth contour, and it has a clear physical meaning. Detailed investigations on the cross-sections of MICCs have provided a kind of important information about atomic size changing in the process of forming molecules. Studies on electron density distribution on the MICC not only provide a new insight into molecular shape, but also show that the electron density distribution on the boundary surface relates closely with molecular properties and reactivities. For the homologues of alkanes, Rout(H), Dmin, and Dmax (the minimum and maximum of electron density on the MICC), all have very good linear relationships with minus of the molecular ionization potential. This work may serve as a basis for exploring a new reactivity indicator of chemical reactions and for studying molecular shape properties of large organic and biological molecules.  相似文献   
84.
The molecular intrinsic characteristic contour (MICC) is defined based on the classical turning point of electron movement in a molecule. Three typical organic molecules, I.e. Methane, methanol and formic acid, were employed as examples for detailed introduction of our method. Investigations on the cross-sections of MICC provide important information about atomic size changing in the process of forming molecules. The electron density distributions on the MICCs of these molecules were calculated and shown for the first time. Results showed that the electron density distribution on the MICC correlates closely with molecular chemical properties, and it provides a new insight into molecular boundary.  相似文献   
85.
Homogeneity and structure of organically modified polysiloxane networks prepared by sol-gel co-condensation, as well as location and nature of water molecules and silanol groups were studied by 1D and 2D solid-state NMR. 1H–29Si and 1H–1H interatomic distances were estimated from variable contact-time CP/MAS experiments, 1H NMR chemical shifts and off-resonance WISE NMR. A structure model of these networks is proposed and discussed. The fraction of proton-inaccessible units Q4 in the networks decreases with increasing amounts of dimethylsiloxane (D) and methylsiloxane (T) units. In contrast to systems prepared by co-condensation of tetraethoxysilane (TEOS) with dimethyl(diethoxy)silane (DMDEOS), proton-inaccessible units form essential fraction in networks prepared by co-condensation of TEOS with methyl(triethoxy)silane (MTEOS). The proton-accessible part of the networks with high O/Si ratios is nano-heterogeneous phase, which is composed of water containing Q i particles separated by copolymer domains. The overall homogeneity and uniformity of binding sites around silanol groups increases by co-condensation TEOS with DMDEOS or MTEOS, while the amount of physisorbed water as well as the hydrogen bond strength decreases, as compared with neat silica gel prepared by polycondensation of TEOS.  相似文献   
86.
This work presents multi‐state multi‐reference Møller–Plesset second‐order perturbation theory as a variant of multi‐reference perturbation theory to treat electron correlation in molecules. An effective Hamiltonian is constructed from the first‐order wave operator to treat several strongly interacting electronic states simultaneously. The wave operator is obtained by solving the generalized Bloch equation within the first‐order interaction space using a multi‐partitioning of the Hamiltonian based on multi‐reference Møller–Plesset second‐order perturbation theory. The corresponding zeroth‐order Hamiltonians are nondiagonal. To reduce the computational effort that arises from the nondiagonal generalized Fock operator, a selection procedure is used that divides the configurations of the first‐order interaction space into two sets based on the strength of the interaction with the reference space. In the weaker interacting set, only the projected diagonal part of the zeroth‐order Hamiltonian is taken into account. The justification of the approach is demonstrated in two examples: the mixing of valence Rydberg states in ethylene, and the avoided crossing of neutral and ionic potential curves in LiF. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   
87.
Twenty-two isomers/conformers of C3H6S+√ radical cations have been identified and their heats of formation (ΔHf) at 0 and 298 K have been calculated using the Gaussian-3 (G3) method. Seven of these isomers are known and their ΔHf data are available in the literature for comparison. The least energy isomer is found to be the thioacetone radical cation (4+) with C2v symmetry. In contrast, the least energy C3H6O+√ isomer is the 1-propen-2-ol radical cation. The G3 ΔHf298 of 4+ is calculated to be 859.4 kJ mol−1, ca. 38 kJ mol−1 higher than the literature value, ≤821 kJ mol−1. For allyl mercaptan radical cation (7+), the G3 ΔHf298 is calculated to be 927.8 kJ mol−1, also not in good agreement with the experimental estimate, 956 kJ mol−1. Upon examining the experimental data and carrying out further calculations, it is shown that the G3 ΔHf298 values for 4+ and 7+ should be more reliable than the compiled values. For the five remaining cations with available experimental thermal data, the agreement between the experimental and G3 results ranges from fair to excellent.

Cation CH3CHSCH2+√ (10+) has the least energy among the eleven distonic radical cations identified. Their ΔHf298 values range from 918 to 1151 kJ mol−1. Nevertheless, only one of them, CH2=SCH2CH2+√ (12+), has been observed. Its G3 ΔHf298 value is 980.9 kJ mol−1, in fair agreement with the experimental result, 990 kJ mol−1.

A couple of reactions involving C3H6S+√ isomers CH2=SCH2CH2+√ (12+) and trimethylene sulfide radical cation (13+) have also been studied with the G3 method and the results are consistent with experimental findings.  相似文献   

88.
Never has the world been more challenged by respiratory diseases (RDs) than it has witnessed in the last few decades. This is evident in the plethora of acute and chronic respiratory conditions, ranging from asthma and chronic obstructive pulmonary disease (COPD) to multidrug-resistant tuberculosis, pneumonia, influenza, and more recently, the novel coronavirus (COVID-19) disease. Unfortunately, the emergence of drug-resistant strains of pathogens, drug toxicity and side effects are drawbacks to effective chemotherapeutic management of RDs; hence, our focus on natural sources because of their unique chemical diversities and novel therapeutic applications. This review provides a summary on some common RDs, their management strategies, and the prospect of plant-derived natural products in the search for new drugs against common respiratory diseases.  相似文献   
89.
SIRT5 is a member of the Sirtuin family, a class of deacetylating enzymes consisting of seven isoforms, involved in the regulation of several processes, including gene expression, metabolism, stress response, and aging. Considering that the anomalous activity of SIRT5 is linked to many pathological conditions, we present herein an overview of the most interesting modulators, with the aim of contributing to further development in this field.  相似文献   
90.
PPARγ agonists are implicated in the regulation of diabetes and metabolic syndrome and have therapeutic potential in brain disorders. PPARγ modulates appetite through its central effects, especially on the hypothalamic arcuate nucleus (ARC). Previous studies demonstrated that the small molecule GL516 is a PPARγ agonist able to reduce oxidative stress and apoptosis with a potential neuroprotective role. Herein, we investigated the effects of GL516, in vitro and ex vivo, on the levels of hypothalamic dopamine (DA) and serotonin (5-HT). The gene expressions of neuropeptide Y, CART, AgRP, and POMC, which play master roles in the neuroendocrine regulation of feeding behavior and energy balance, were also evaluated. HypoE22 cells were treated with H2O2 (300 μM) for 2 h e 30’ and with different concentrations of GL516 (1 nM-100 µM). The cell viability was evaluated after 24 and 48 h of culturing using the MTT test. DA and 5-HT levels in the HypoE22 cell supernatants were analyzed through HPLC; an ex vivo study on isolated hypothalamic specimens challenged with scalar concentrations of GL516 (1–100 µM) and with pioglitazone (10 µM) was carried out. The gene expressions of CART, NPY, AgRP, and POMC were also determined by a quantitative real-time PCR. The results obtained showed that GL516 was able to reduce DA and 5-HT turnover; moreover, it was effective in stimulating NPY and AgRP gene expressions with a concomitant reduction in CART and POMC gene expressions. These results highlight the capability of GL516 to modulate neuropeptide pathways deeply involved in appetite control suggesting an orexigenic effect. These findings emphasize the potential use of GL516 as a promising candidate for therapeutical applications in neurodegenerative diseases associated with the reduction in food intake and stimulation of catabolic pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号