首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   788篇
  免费   63篇
  国内免费   143篇
化学   788篇
晶体学   6篇
力学   35篇
综合类   1篇
物理学   164篇
  2024年   2篇
  2023年   8篇
  2022年   24篇
  2021年   23篇
  2020年   22篇
  2019年   20篇
  2018年   29篇
  2017年   31篇
  2016年   29篇
  2015年   27篇
  2014年   33篇
  2013年   80篇
  2012年   42篇
  2011年   64篇
  2010年   63篇
  2009年   66篇
  2008年   50篇
  2007年   58篇
  2006年   38篇
  2005年   37篇
  2004年   47篇
  2003年   29篇
  2002年   18篇
  2001年   18篇
  2000年   21篇
  1999年   14篇
  1998年   12篇
  1997年   8篇
  1996年   8篇
  1995年   6篇
  1994年   16篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1987年   5篇
  1986年   3篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1973年   1篇
  1967年   1篇
排序方式: 共有994条查询结果,搜索用时 31 毫秒
71.
Selective fabrication of superhydrophilic (S-philic) region on a superhydrophobic (S-phobic) surface requires complex technology and high cost, which has limited applications of extreme wettability patterns. In this paper, a twice-chemical-etching approach without special modification is used to prepare the extreme wettability patterns. Superhydrophobicity and superhydrophilicity can be successfully achieved after twice chemical etching for 20 seconds. The obtained patterns can maintain their extreme wettability for at least 30 days. Functional platforms with single-S-philic and multi-S-philic regions are fabricated to manipulate water and various organic liquids with water-film protection in an air environment.  相似文献   
72.
A strategy for clustering of native lipid membranes is presented. It relies on the formation of complexes between hydrophobic chelators embedded within the lipid bilayer and metal cations in the aqueous phase, capable of binding two (or more) chelators simultaneously Fig. 1. We used this approach with purple membranes containing the light driven proton pump protein bacteriorhodopsin (bR) and showed that patches of purple membranes cluster into mm sized aggregates and that these are stable for months when incubated at 19 °C in the dark. The strategy may be general since four different hydrophobic chelators (1,10-phenanthroline, bathophenanthroline, Phen-C10, and 8-hydroxyquinoline) and various divalent cations (Ni2+, Zn2+, Cd2+, Mn2+, and Cu2+) induced formation of membrane clusters. Moreover, the absolute requirement for a hydrophobic chelator and the appropriate metal cations was demonstrated with light and atomic force microscopy (AFM); the presence of the metal does not appear to affect the functional state of the protein. The potential utility of the approach as an alternative to assembled lipid bilayers is suggested.  相似文献   
73.
N. Kruszewska 《Physica A》2010,389(16):3053-3068
In-plane (bio)matter aggregations of amphiphilic nature are modeled extensively by Monte Carlo simulation in their natural entropic contexts. The modeling starts by designing the aggregations at a molecular level, pointing to its well-known configuration vs conformation character. Then, the conformational behavior is distributed over the aggregations obtained, with the aim of revealing their main sol-gel type (viscoelastic) effects. The passage between the resulting sol and gel phases is not controlled by a scan in the temperature domain, on the contrary, the control parameter is selected to be the hydrophobic-interaction strength while the temperature remains unchanged. The distribution of ordered fringed micelles, and the overall crystalline inclusions of the gel phase, suggested a first-order phase change, reasonably conceivable in terms of Avrami-Kolmogorov formalism for such hydrophobic-force driven and percolation-in-nature systems. A phase transition diagram has been presented as a novel proposition to discern between sol vs gel phases. As specific results, also of high experimental value, a damped-oscillating cluster-involving effect on the resulting hydrophobic-polar matrices has been detected and analysed. Other additional intermolecular-sharing entropy-influenced effects on clustering, as seen in terms of chain-to-chain connectivities, have been addressed as being of sufficient relevance to the gelation mechanism described. The microcrystalline inclusions downgrade to some extent the overall picture of entropy-affected gelation, being all together suitable for experimental check-out.  相似文献   
74.
New silicon magnetite ferrofluids were prepared by dispersing siloxane-coated magnetite particles in polydimethylsiloxane with low or high molecular weights. Ferrofluids are stable colloidal dispersions of ultra fine covered magnetite particles, which may be selected for a specific application. We demonstrated new methods of stabilizing the magnetic particles by reacting the hydroxyl groups on the surface of magnetite particles with terminal ethoxy groups of polydimethylsiloxane, followed by their dispersion in silicon fluids. The new silicon ferrofluids were tested from the morphology, magnetic properties/losses, and rheological properties point of view.  相似文献   
75.
The adsorption of cetyltrimethylammonium bromide (CTAB) on disturbed n-alkanethiolate self-assembled monolayers (SAMs) was investigated by electrochemical methods with potassium ferricyanide [K3Fe(CN)6] as a probe. Compared with the completely restrained signal at ordinary compact n-alkanethiolate SAMs, the electrochemical response of K3Fe(CN)6 at the disturbed n-alkanethiolate SAMs was partly restored and became progressively reversible in the presence of increasing concentrations of CTAB, which was employed to characterize the adsorption of cationic surfactants on hydrophobic SAMs. The effect of CTAB concentration on electrochemical impedance spectroscopy (EIS) plots indicated that CTAB experienced two different types of adsorptive behavior at the disturbed n-alkanethiolate SAMs: monomer adsorption at low concentrations below 1×10–6 M and monolayer adsorption at CTAB concentrations above 1×10–5 M. The adsorption of a series of cationic surfactants with similar structures to CTAB on disturbed n-alkanethiolate SAMs was also explored. These surfactants had similar adsorptive behavior and showed nearly linear adsorption characteristics with the length of their hydrophobic tails.  相似文献   
76.
Hydrophobic vaterite nanoparticles were prepared via crystallization of CaCO3 with oleic acid in methanol by mimicking the process of biomineralization. The molar ratio of oleic acid to calcium ion was varied from 0.1 to 0.5. By changing the concentration of the oleic acid, CaCO3 particles with different shapes and polymorphism were obtained. High concentration of the oleic acid gave stable vaterite crystals, the polymorph of which did not change when the composite was kept in water for more than one week. Fourier transform infrared spectroscopy (FT-IR) and TGA analysis of the obtained product indicated that the oleic acid was bound to the crystalline CaCO3. The contact angle of the modified vaterite reached 122°. We have succeeded in crystallization of hydrophobic CaCO3 nanoparticles in situ.  相似文献   
77.
This paper describes solvent flux and rejection behavior of different hydrophilic TiO2 membranes and a hydrophobic ZrO2 membrane. Solvents and solutes used range from polar to non-polar. Additionally, the temperature effect on permeability and rejection of solutes through these membranes was examined.  相似文献   
78.
Durable superhydrophobic cellulose fabric was prepared from water glass and n-octadecyltriethoxysilane (ODTES) with 3-glycidyloxypropyltrimethoxysilane (GPTMS) as crosslinker by sol-gel method. The result showed that the addition of GPTMS could result in a better fixation of silica coating from water glass on cellulose fabric. The silanization of hydrolyzed ODTES at different temperatures and times was studied and optimized. The results showed that silanization time was more important than temperature in forming durable hydrophobic surface. The durability of superhydrophobicity treatment was analyzed by XPS. As a result, the superhydrophobic cotton treated under the optimal condition still remained hydrophobic properties after 50 washing cycles.  相似文献   
79.
Among the different properties of the hydrophobic semiconductor surfaces, self-cleaning promoted by solar illumination is probably one of the most attractive from the technological point of view. The use of sonochemistry for nanomaterials' synthesis has been recently employed for the associated shorter reaction times and efficient route for control over crystal growth and the management of the resulting material's photocatalytic properties. Moreover, the sol–gel method coupled to sonochemistry modifies the chemical environment, with reactive species such as •OH and H2O2, which yield a homogeneous synthesis. Therefore, in the following investigation, the sol–gel method was coupled to sonochemistry to synthesize a SiO2@TiO2 composite, for which the sonochemical amplitude of irradiation was varied to determine its effect on the morphology and mechanical and self-cleaning properties. SEM and AFM characterized the samples of SiO2@TiO2 composite, and while the micrographs indicate that a high ultrasonic energy results in an amorphous SiO2@TiO2 composite with a low rugosity, which was affected in the determination of the contact angle on the surface. On the other hand, FTIR analysis suggests a significant change in both SiO2-SiO and SiO2-TiO2 chemical bonds with changes in vibrations and frequency, corroborating an important influence of the sonochemical energy contribution to the hydrolysis process. Raman spectroscopy confirms the presence of an amorphous phase of silicon dioxide; however, the vibrations of TiO2 were not visible. The evaluation of hydrophobic and self-cleaning properties shows a maximum of ultrasonic energy needed to improve the contact angle and rhodamine B (RhB) removal.  相似文献   
80.
The first cationic water-soluble pillar[7]arene CWP7 was prepared. 1H NMR, 13C NMR, and MALDI-TOF-MS were performed to provide converging evidences of the structure of obtained CWP7. Host–guest complexation between this novel pillar[7]arene-based host and sodium pyren-1-olate guest G was fully investigated in aqueous solution. Increased fluorescence intensity was observed during the inclusion complexation. Driven by the cooperativity of electrostatic interactions, π-stacking interactions and hydrophilic/hydrophobic interactions, the guest penetrated into the cavity of CWP7 to form a pseudorotaxane-type inclusion complex with relatively high binding affinity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号